def test_Abs_rewrite(): x = Symbol('x', real=True) a = Abs(x).rewrite(Heaviside).expand() assert a == x*Heaviside(x) - x*Heaviside(-x) for i in [-2, -1, 0, 1, 2]: assert a.subs(x, i) == abs(i) y = Symbol('y') assert Abs(y).rewrite(Heaviside) == Abs(y)
def test_Abs_rewrite(): x = Symbol("x", real=True) a = Abs(x).rewrite(Heaviside).expand() assert a == x * Heaviside(x) - x * Heaviside(-x) for i in [-2, -1, 0, 1, 2]: assert a.subs(x, i) == abs(i) y = Symbol("y") assert Abs(y).rewrite(Heaviside) == Abs(y) x, y = Symbol("x", real=True), Symbol("y") assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True)) assert Abs(y).rewrite(Piecewise) == Abs(y)
def derive_solution(): from sympy import symbols, Matrix, cse, cos, sin, Abs, Rational,acos,asin cs,K,tec,nu,phase,sigma_phase,alpha,beta,tec_p,cs_p,sigma_tec,sigma_cs = symbols('cs K tec nu phase sigma_phase alpha beta tec_p cs_p sigma_tec sigma_cs', real=True) g = K*tec/nu + cs*alpha L = Abs(g - phase)/sigma_phase + beta*((tec - tec_p)**Rational(2)/sigma_tec**Rational(2)/Rational(2) + (cs - cs_p)**Rational(2)/sigma_cs**Rational(2)/Rational(2)) req,res = cse(L,optimizations='basic') for line in req: print("{} = {}".format(line[0],line[1]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign")) print("{}".format(res[0]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign")) print() grad = Matrix([sigma_tec**Rational(2)*L.diff(tec), sigma_cs**Rational(2)*L.diff(cs)]) req,res = cse(grad,optimizations='basic') for line in req: print("{} = {}".format(line[0],line[1]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign")) print("{}".format(res[0]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign")) print() H = Matrix([[L.diff(tec).diff(tec),L.diff(tec).diff(cs)],[L.diff(cs).diff(tec),L.diff(cs).diff(cs)]]) req,res = cse(H,optimizations='basic') for line in req: print("{} = {}".format(line[0],line[1]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign")) print("{}".format(res[0]).replace("Abs","np.abs").replace("cos","np.cos").replace("sin","np.sin").replace("sign","np.sign"))
def test_Abs(): raises(TypeError, lambda: Abs(C.Interval(2, 3))) # issue 8717 x, y = symbols('x,y') assert sign(sign(x)) == sign(x) assert sign(x * y).func is sign assert Abs(0) == 0 assert Abs(1) == 1 assert Abs(-1) == 1 assert Abs(I) == 1 assert Abs(-I) == 1 assert Abs(nan) == nan assert Abs(I * pi) == pi assert Abs(-I * pi) == pi assert Abs(I * x) == Abs(x) assert Abs(-I * x) == Abs(x) assert Abs(-2 * x) == 2 * Abs(x) assert Abs(-2.0 * x) == 2.0 * Abs(x) assert Abs(2 * pi * x * y) == 2 * pi * Abs(x * y) assert Abs(conjugate(x)) == Abs(x) assert conjugate(Abs(x)) == Abs(x) a = Symbol('a', positive=True) assert Abs(2 * pi * x * a) == 2 * pi * a * Abs(x) assert Abs(2 * pi * I * x * a) == 2 * pi * a * Abs(x) x = Symbol('x', real=True) n = Symbol('n', integer=True) assert Abs((-1)**n) == 1 assert x**(2 * n) == Abs(x)**(2 * n) assert Abs(x).diff(x) == sign(x) assert abs(x) == Abs(x) # Python built-in assert Abs(x)**3 == x**2 * Abs(x) assert Abs(x)**4 == x**4 assert (Abs(x)**(3 * n)).args == (Abs(x), 3 * n ) # leave symbolic odd unchanged assert (1 / Abs(x)).args == (Abs(x), -1) assert 1 / Abs(x)**3 == 1 / (x**2 * Abs(x)) assert Abs(x)**-3 == Abs(x) / (x**4) assert Abs(x**3) == x**2 * Abs(x) x = Symbol('x', imaginary=True) assert Abs(x).diff(x) == -sign(x) eq = -sqrt(10 + 6 * sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3 * sqrt(3)) # if there is a fast way to know when you can and when you cannot prove an # expression like this is zero then the equality to zero is ok assert abs(eq).func is Abs or abs(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2 * sqrt(3) + 1331 * sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert abs(d).func is Abs or abs(d) == 0 assert Abs(4 * exp(pi * I / 4)) == 4 assert Abs(3**(2 + I)) == 9 assert Abs((-3)**(1 - I)) == 3 * exp(pi) assert Abs(oo) is oo assert Abs(-oo) is oo assert Abs(oo + I) is oo assert Abs(oo + I * oo) is oo a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False
def test_eigen(): R = Rational M = Matrix.eye(3) assert M.eigenvals(multiple=False) == {S.One: 3} assert M.eigenvals(multiple=True) == [1, 1, 1] assert M.eigenvects() == ([ (1, 3, [Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])]) ]) assert M.left_eigenvects() == ([ (1, 3, [Matrix([[1, 0, 0]]), Matrix([[0, 1, 0]]), Matrix([[0, 0, 1]])]) ]) M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2 * S.One: 1, -S.One: 1, S.Zero: 1} assert M.eigenvects() == ([(-1, 1, [Matrix([-1, 1, 0])]), (0, 1, [Matrix([0, -1, 1])]), (2, 1, [Matrix([R(2, 3), R(1, 3), 1])])]) assert M.left_eigenvects() == ([(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])]) a = Symbol('a') M = Matrix([[a, 0], [0, 1]]) assert M.eigenvals() == {a: 1, S.One: 1} M = Matrix([[1, -1], [1, 3]]) assert M.eigenvects() == ([(2, 2, [Matrix(2, 1, [-1, 1])])]) assert M.left_eigenvects() == ([(2, 2, [Matrix([[1, 1]])])]) M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a = R(15, 2) b = 3 * 33**R(1, 2) c = R(13, 2) d = (R(33, 8) + 3 * b / 8) e = (R(33, 8) - 3 * b / 8) def NS(e, n): return str(N(e, n)) r = [ (a - b / 2, 1, [ Matrix([ (12 + 24 / (c - b / 2)) / ((c - b / 2) * e) + 3 / (c - b / 2), (6 + 12 / (c - b / 2)) / e, 1 ]) ]), (0, 1, [Matrix([1, -2, 1])]), (a + b / 2, 1, [ Matrix([ (12 + 24 / (c + b / 2)) / ((c + b / 2) * d) + 3 / (c + b / 2), (6 + 12 / (c + b / 2)) / d, 1 ]) ]), ] r1 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] r = M.eigenvects() r2 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] assert sorted(r1) == sorted(r2) eps = Symbol('eps', real=True) M = Matrix([[abs(eps), I * eps], [-I * eps, abs(eps)]]) assert M.eigenvects() == ([ (0, 1, [Matrix([[-I * eps / abs(eps)], [1]])]), (2 * abs(eps), 1, [Matrix([[I * eps / abs(eps)], [1]])]), ]) assert M.left_eigenvects() == ([ (0, 1, [Matrix([[I * eps / Abs(eps), 1]])]), (2 * Abs(eps), 1, [Matrix([[-I * eps / Abs(eps), 1]])]) ]) M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) M._eigenvects = M.eigenvects(simplify=False) assert max(i.q for i in M._eigenvects[0][2][0]) > 1 M._eigenvects = M.eigenvects(simplify=True) assert max(i.q for i in M._eigenvects[0][2][0]) == 1 M = Matrix([[Rational(1, 4), 1], [1, 1]]) assert M.eigenvects(simplify=True) == [ (Rational(5, 8) - sqrt(73) / 8, 1, [Matrix([[-sqrt(73) / 8 - Rational(3, 8)], [1]])]), (Rational(5, 8) + sqrt(73) / 8, 1, [Matrix([[Rational(-3, 8) + sqrt(73) / 8], [1]])]) ] with dotprodsimp(True): assert M.eigenvects(simplify=False) == [ (Rational(5, 8) - sqrt(73) / 8, 1, [Matrix([[-1 / (-Rational(3, 8) + sqrt(73) / 8)], [1]])]), (Rational(5, 8) + sqrt(73) / 8, 1, [Matrix([[8 / (3 + sqrt(73))], [1]])]) ] # issue 10719 assert Matrix([]).eigenvals() == {} assert Matrix([]).eigenvals(multiple=True) == [] assert Matrix([]).eigenvects() == [] # issue 15119 raises(NonSquareMatrixError, lambda: Matrix([[1, 2], [0, 4], [0, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 0], [3, 4], [5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda: Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals()) raises( NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals( error_when_incomplete=False)) raises( NonSquareMatrixError, lambda: Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals( error_when_incomplete=False)) # issue 15125 from sympy.core.function import count_ops q = Symbol("q", positive=True) m = Matrix([[-2, exp(-q), 1], [exp(q), -2, 1], [1, 1, -2]]) assert count_ops(m.eigenvals(simplify=False)) > count_ops( m.eigenvals(simplify=True)) assert count_ops(m.eigenvals(simplify=lambda x: x)) > count_ops( m.eigenvals(simplify=True)) assert isinstance(m.eigenvals(simplify=True, multiple=False), dict) assert isinstance(m.eigenvals(simplify=True, multiple=True), list) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=False), dict) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=True), list)
class TestAllGood(object): # These latex strings should parse to the corresponding SymPy expression GOOD_PAIRS = [ ("0", 0), ("1", 1), ("-3.14", -3.14), ("5-3", _Add(5, -3)), ("(-7.13)(1.5)", _Mul(Rational('-7.13'), Rational('1.5'))), ("\\left(-7.13\\right)\\left(1.5\\right)", _Mul(Rational('-7.13'), Rational('1.5'))), ("x", x), ("2x", 2 * x), ("x^2", x**2), ("x^{3 + 1}", x**_Add(3, 1)), ("x^{\\left\\{3 + 1\\right\\}}", x**_Add(3, 1)), ("-3y + 2x", _Add(_Mul(2, x), Mul(-1, 3, y, evaluate=False))), ("-c", -c), ("a \\cdot b", a * b), ("a / b", a / b), ("a \\div b", a / b), ("a + b", a + b), ("a + b - a", Add(a, b, _Mul(-1, a), evaluate=False)), ("a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), ("a^2 + b^2 != 2c^2", Ne(a**2 + b**2, 2 * c**2)), ("a\\mod b", Mod(a, b)), ("\\sin \\theta", sin(theta)), ("\\sin(\\theta)", sin(theta)), ("\\sin\\left(\\theta\\right)", sin(theta)), ("\\sin^{-1} a", asin(a)), ("\\sin a \\cos b", _Mul(sin(a), cos(b))), ("\\sin \\cos \\theta", sin(cos(theta))), ("\\sin(\\cos \\theta)", sin(cos(theta))), ("\\arcsin(a)", asin(a)), ("\\arccos(a)", acos(a)), ("\\arctan(a)", atan(a)), ("\\sinh(a)", sinh(a)), ("\\cosh(a)", cosh(a)), ("\\tanh(a)", tanh(a)), ("\\sinh^{-1}(a)", asinh(a)), ("\\cosh^{-1}(a)", acosh(a)), ("\\tanh^{-1}(a)", atanh(a)), ("\\arcsinh(a)", asinh(a)), ("\\arccosh(a)", acosh(a)), ("\\arctanh(a)", atanh(a)), ("\\arsinh(a)", asinh(a)), ("\\arcosh(a)", acosh(a)), ("\\artanh(a)", atanh(a)), ("\\operatorname{arcsinh}(a)", asinh(a)), ("\\operatorname{arccosh}(a)", acosh(a)), ("\\operatorname{arctanh}(a)", atanh(a)), ("\\operatorname{arsinh}(a)", asinh(a)), ("\\operatorname{arcosh}(a)", acosh(a)), ("\\operatorname{artanh}(a)", atanh(a)), ("\\operatorname{gcd}(a, b)", UnevaluatedExpr(gcd(a, b))), ("\\operatorname{lcm}(a, b)", UnevaluatedExpr(lcm(a, b))), ("\\operatorname{gcd}(a,b)", UnevaluatedExpr(gcd(a, b))), ("\\operatorname{lcm}(a,b)", UnevaluatedExpr(lcm(a, b))), ("\\operatorname{floor}(a)", floor(a)), ("\\operatorname{ceil}(b)", ceiling(b)), ("\\cos^2(x)", cos(x)**2), ("\\cos(x)^2", cos(x)**2), ("\\gcd(a, b)", UnevaluatedExpr(gcd(a, b))), ("\\lcm(a, b)", UnevaluatedExpr(lcm(a, b))), ("\\gcd(a,b)", UnevaluatedExpr(gcd(a, b))), ("\\lcm(a,b)", UnevaluatedExpr(lcm(a, b))), ("\\floor(a)", floor(a)), ("\\ceil(b)", ceiling(b)), ("\\max(a, b)", Max(a, b)), ("\\min(a, b)", Min(a, b)), ("\\frac{a}{b}", a / b), ("\\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), ("\\frac{7}{3}", _Mul(7, _Pow(3, -1))), ("(\\csc x)(\\sec y)", csc(x) * sec(y)), ("\\lim_{x \\to 3} a", Limit(a, x, 3)), ("\\lim_{x \\rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Rightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\Longrightarrow 3} a", Limit(a, x, 3)), ("\\lim_{x \\to 3^{+}} a", Limit(a, x, 3, dir='+')), ("\\lim_{x \\to 3^{-}} a", Limit(a, x, 3, dir='-')), ("\\infty", oo), ("\\infty\\%", oo), ("\\$\\infty", oo), ("-\\infty", -oo), ("-\\infty\\%", -oo), ("-\\$\\infty", -oo), ("\\lim_{x \\to \\infty} \\frac{1}{x}", Limit(_Mul(1, _Pow(x, -1)), x, oo)), ("\\frac{d}{dx} x", Derivative(x, x)), ("\\frac{d}{dt} x", Derivative(x, t)), # ("f(x)", f(x)), # ("f(x, y)", f(x, y)), # ("f(x, y, z)", f(x, y, z)), # ("\\frac{d f(x)}{dx}", Derivative(f(x), x)), # ("\\frac{d\\theta(x)}{dx}", Derivative(theta(x), x)), ("|x|", _Abs(x)), ("\\left|x\\right|", _Abs(x)), ("||x||", _Abs(Abs(x))), ("|x||y|", _Abs(x) * _Abs(y)), ("||x||y||", _Abs(_Abs(x) * _Abs(y))), ("\\lfloor x\\rfloor", floor(x)), ("\\lceil y\\rceil", ceiling(y)), ("\\pi^{|xy|}", pi**_Abs(x * y)), ("\\frac{\\pi}{3}", _Mul(pi, _Pow(3, -1))), ("\\sin{\\frac{\\pi}{2}}", sin(_Mul(pi, _Pow(2, -1)), evaluate=False)), ("a+bI", a + I * b), ("e^{I\\pi}", -1), ("\\int x dx", Integral(x, x)), ("\\int x d\\theta", Integral(x, theta)), ("\\int (x^2 - y)dx", Integral(x**2 - y, x)), ("\\int x + a dx", Integral(_Add(x, a), x)), ("\\int da", Integral(1, a)), ("\\int_0^7 dx", Integral(1, (x, 0, 7))), ("\\int_a^b x dx", Integral(x, (x, a, b))), ("\\int^b_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^b x dx", Integral(x, (x, a, b))), ("\\int^{b}_a x dx", Integral(x, (x, a, b))), ("\\int_{a}^{b} x dx", Integral(x, (x, a, b))), ("\\int_{ }^{}x dx", Integral(x, x)), ("\\int^{ }_{ }x dx", Integral(x, x)), ("\\int^{b}_{a} x dx", Integral(x, (x, a, b))), # ("\\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), ("\\int (x+a)", Integral(_Add(x, a), x)), ("\\int a + b + c dx", Integral(Add(a, b, c, evaluate=False), x)), ("\\int \\frac{dz}{z}", Integral(Pow(z, -1), z)), ("\\int \\frac{3 dz}{z}", Integral(3 * Pow(z, -1), z)), ("\\int \\frac{1}{x} dx", Integral(Pow(x, -1), x)), ("\\int \\frac{1}{a} + \\frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), ("\\int \\frac{3 \\cdot d\\theta}{\\theta}", Integral(3 * _Pow(theta, -1), theta)), ("\\int \\frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), ("x_0", Symbol('x_0', real=True)), ("x_{1}", Symbol('x_1', real=True)), ("x_a", Symbol('x_a', real=True)), ("x_{b}", Symbol('x_b', real=True)), ("h_\\theta", Symbol('h_{\\theta}', real=True)), ("h_\\theta ", Symbol('h_{\\theta}', real=True)), ("h_{\\theta}", Symbol('h_{\\theta}', real=True)), # ("h_{\\theta}(x_0, x_1)", Symbol('h_{theta}', real=True)(Symbol('x_{0}', real=True), Symbol('x_{1}', real=True))), ("x!", _factorial(x)), ("100!", _factorial(100)), ("\\theta!", _factorial(theta)), ("(x + 1)!", _factorial(_Add(x, 1))), ("\\left(x + 1\\right)!", _factorial(_Add(x, 1))), ("(x!)!", _factorial(_factorial(x))), ("x!!!", _factorial(_factorial(_factorial(x)))), ("5!7!", _Mul(_factorial(5), _factorial(7))), ("\\sqrt{x}", sqrt(x)), ("\\sqrt{x + b}", sqrt(_Add(x, b))), ("\\sqrt[3]{\\sin x}", root(sin(x), 3)), ("\\sqrt[y]{\\sin x}", root(sin(x), y)), ("\\sqrt[\\theta]{\\sin x}", root(sin(x), theta)), ("x < y", StrictLessThan(x, y)), ("x \\leq y", LessThan(x, y)), ("x > y", StrictGreaterThan(x, y)), ("x \\geq y", GreaterThan(x, y)), ("\\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), ("\\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), ("\\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), ("\\sum_{n = 0}^{\\infty} \\frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))), ("\\prod_{a = b}^{c} x", Product(x, (a, b, c))), ("\\prod_{a = b}^c x", Product(x, (a, b, c))), ("\\prod^{c}_{a = b} x", Product(x, (a, b, c))), ("\\prod^c_{a = b} x", Product(x, (a, b, c))), ("\\ln x", _log(x, E)), ("\\ln xy", _log(x * y, E)), ("\\log x", _log(x, 10)), ("\\log xy", _log(x * y, 10)), # ("\\log_2 x", _log(x, 2)), ("\\log_{2} x", _log(x, 2)), # ("\\log_a x", _log(x, a)), ("\\log_{a} x", _log(x, a)), ("\\log_{11} x", _log(x, 11)), ("\\log_{a^2} x", _log(x, _Pow(a, 2))), ("[x]", x), ("[a + b]", _Add(a, b)), ("\\frac{d}{dx} [ \\tan x ]", Derivative(tan(x), x)), ("2\\overline{x}", 2 * Symbol('xbar', real=True)), ("2\\overline{x}_n", 2 * Symbol('xbar_n', real=True)), ("\\frac{x}{\\overline{x}_n}", x / Symbol('xbar_n', real=True)), ("\\frac{\\sin(x)}{\\overline{x}_n}", sin(Symbol('x', real=True)) / Symbol('xbar_n', real=True)), ("2\\bar{x}", 2 * Symbol('xbar', real=True)), ("2\\bar{x}_n", 2 * Symbol('xbar_n', real=True)), ("\\sin\\left(\\theta\\right) \\cdot4", sin(theta) * 4), ("\\ln\\left(\\theta\\right)", _log(theta, E)), ("\\ln\\left(x-\\theta\\right)", _log(x - theta, E)), ("\\ln\\left(\\left(x-\\theta\\right)\\right)", _log(x - theta, E)), ("\\ln\\left(\\left[x-\\theta\\right]\\right)", _log(x - theta, E)), ("\\ln\\left(\\left\\{x-\\theta\\right\\}\\right)", _log(x - theta, E)), ("\\ln\\left(\\left|x-\\theta\\right|\\right)", _log(_Abs(x - theta), E)), ("\\frac{1}{2}xy(x+y)", Mul(_Pow(2, -1), x, y, (x + y), evaluate=False)), ("\\frac{1}{2}\\theta(x+y)", Mul(_Pow(2, -1), theta, (x + y), evaluate=False)), ("1-f(x)", 1 - f * x), ("\\begin{matrix}1&2\\\\3&4\\end{matrix}", Matrix([[1, 2], [3, 4]])), ("\\begin{matrix}x&x^2\\\\\\sqrt{x}&x\\end{matrix}", Matrix([[x, x**2], [_Pow(x, S.Half), x]])), ("\\begin{matrix}\\sqrt{x}\\\\\\sin(\\theta)\\end{matrix}", Matrix([_Pow(x, S.Half), sin(theta)])), ("\\begin{pmatrix}1&2\\\\3&4\\end{pmatrix}", Matrix([[1, 2], [3, 4]])), ("\\begin{bmatrix}1&2\\\\3&4\\end{bmatrix}", Matrix([[1, 2], [3, 4]])), # scientific notation ("2.5\\times 10^2", 250), ("1,500\\times 10^{-1}", 150), # e notation ("2.5E2", 250), ("1,500E-1", 150), # multiplication without cmd ("2x2y", Mul(2, x, 2, y, evaluate=False)), ("2x2", Mul(2, x, 2, evaluate=False)), ("x2", x * 2), # lin alg processing ("\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(theta, Matrix([[1, 2], [3, 4]]), evaluate=False)), ("\\theta\\begin{matrix}1\\\\3\\end{matrix} - \\begin{matrix}-1\\\\2\\end{matrix}", MatAdd(MatMul(theta, Matrix([[1], [3]]), evaluate=False), MatMul(-1, Matrix([[-1], [2]]), evaluate=False), evaluate=False)), ("\\theta\\begin{matrix}1&0\\\\0&1\\end{matrix}*\\begin{matrix}3\\\\-2\\end{matrix}", MatMul(theta, Matrix([[1, 0], [0, 1]]), Matrix([3, -2]), evaluate=False)), ("\\frac{1}{9}\\theta\\begin{matrix}1&2\\\\3&4\\end{matrix}", MatMul(Pow(9, -1, evaluate=False), theta, Matrix([[1, 2], [3, 4]]), evaluate=False)), ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix};\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix},\\begin{pmatrix}4\\\\3\\\\1\\end{pmatrix},\\begin{pmatrix}1\\\\1\\\\1\\end{pmatrix}\\right\\}", [Matrix([1, 2, 3]), Matrix([4, 3, 1]), Matrix([1, 1, 1])]), ("\\left\\{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right\\}", Matrix([1, 2, 3])), ("\\left{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}\\right}", Matrix([1, 2, 3])), ("{\\begin{pmatrix}1\\\\2\\\\3\\end{pmatrix}}", Matrix([1, 2, 3])), # us dollars ("\\$1,000.00", 1000), ("\\$543.21", 543.21), ("\\$0.009", 0.009), # percentages ("100\\%", 1), ("1.5\\%", 0.015), ("0.05\\%", 0.0005), # empty set ("\\emptyset", S.EmptySet) ] def test_good_pair(self, s, eq): assert_equal(s, eq)
def test_geometric_sums(): assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi) assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1 assert summation(Rational(1, 2)**n, (n, 1, oo)) == 1 assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1 assert summation(2**n, (n, 1, oo)) == oo assert summation(2**(-n), (n, 1, oo)) == 1 assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54) assert summation(2**(-4 * n + 3), (n, 1, oo)) == Rational(8, 15) assert summation(2**(n + 1), (n, 1, b)).expand() == 4 * (2**b - 1) # issue 6664: assert summation(x**n, (n, 0, oo)) == \ Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True)) assert summation(-2**n, (n, 0, oo)) == -oo assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo)) # issue 6802: assert summation((-1)**(2 * x + 2), (x, 0, n)) == n + 1 assert summation((-2)**(2 * x + 2), (x, 0, n)) == 4 * 4**(n + 1) / S(3) - S(4) / 3 assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1) / S(2) + S(1) / 2 assert summation(y**x, (x, a, b)) == \ Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True)) assert summation((-2)**(y*x + 2), (x, 0, n)) == \ 4*Piecewise((n + 1, Eq((-2)**y, 1)), ((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True)) # issue 8251: assert summation((1 / (n + 1)**2) * n**2, (n, 0, oo)) == oo #issue 9908: assert Sum(1 / (n**3 - 1), (n, -oo, -2)).doit() == summation(1 / (n**3 - 1), (n, -oo, -2)) #issue 11642: result = Sum(0.5**n, (n, 1, oo)).doit() assert result == 1 assert result.is_Float result = Sum(0.25**n, (n, 1, oo)).doit() assert result == S(1) / 3 assert result.is_Float result = Sum(0.99999**n, (n, 1, oo)).doit() assert result == 99999 assert result.is_Float result = Sum(Rational(1, 2)**n, (n, 1, oo)).doit() assert result == 1 assert not result.is_Float result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit() assert result == S(3) / 2 assert not result.is_Float assert Sum(1.0**n, (n, 1, oo)).doit() == oo assert Sum(2.43**n, (n, 1, oo)).doit() == oo # Issue 13979: i, k, q = symbols('i k q', integer=True) result = summation( exp(-2 * I * pi * k * i / n) * exp(2 * I * pi * q * i / n) / n, (i, 0, n - 1)) assert result.simplify() == Piecewise( (1, Eq(exp(2 * I * pi * (-k + q) / n), 1)), (0, True))
def test_issue_17292(): assert simplify(abs(x) / abs(x**2)) == 1 / abs(x) # this is bigger than the issue: check that deep processing works assert simplify(5 * abs((x**2 - 1) / (x - 1))) == 5 * Abs(x + 1)
def test_sinc_mpmath(): f = lambdify(x, sinc(x), "mpmath") assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) assert density(X)(x) == exp(-Abs(x - mu) / b) / (2 * b)
def test_issue_18997(): assert limit(Abs(log(x)), x, 0) == oo assert limit(Abs(log(Abs(x))), x, 0) == oo
def test_issue_18501(): assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo
def test_issue_12398(): assert limit(Abs(log(x)/x**3), x, oo) == 0 assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3
def test_issue_3206(): x = Symbol('x') assert Abs(Abs(x)) == Abs(x)
def test_issue_4035(): x = Symbol('x') assert Abs(x).expand(trig=True) == Abs(x) assert sign(x).expand(trig=True) == sign(x) assert arg(x).expand(trig=True) == arg(x)
def test_Abs_properties(): x = Symbol('x') assert Abs(x).is_real is True assert Abs(x).is_rational is None assert Abs(x).is_positive is None assert Abs(x).is_nonnegative is True z = Symbol('z', complex=True, zero=False) assert Abs(z).is_real is True assert Abs(z).is_rational is None assert Abs(z).is_positive is True assert Abs(z).is_zero is False p = Symbol('p', positive=True) assert Abs(p).is_real is True assert Abs(p).is_rational is None assert Abs(p).is_positive is True assert Abs(p).is_zero is False q = Symbol('q', rational=True) assert Abs(q).is_rational is True assert Abs(q).is_integer is None assert Abs(q).is_positive is None assert Abs(q).is_nonnegative is True i = Symbol('i', integer=True) assert Abs(i).is_integer is True assert Abs(i).is_positive is None assert Abs(i).is_nonnegative is True e = Symbol('n', even=True) ne = Symbol('ne', real=True, even=False) assert Abs(e).is_even assert Abs(ne).is_even is False assert Abs(i).is_even is None o = Symbol('n', odd=True) no = Symbol('no', real=True, odd=False) assert Abs(o).is_odd assert Abs(no).is_odd is False assert Abs(i).is_odd is None
def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = sympify(s) assert Abs(sin(p)) < 1e-127
def test_Abs(): assert str(Abs(x)) == "Abs(x)" assert str(Abs(Rational(1, 6))) == "1/6" assert str(Abs(Rational(-1, 6))) == "1/6"
def test_issue_19026(): x = Symbol('x', positive=True) assert limit(Abs(log(x) + 1)/log(x), x, oo) == 1
def test_issue_13642(): if not numpy: skip("numpy not installed") f = lambdify(x, sinc(x)) assert Abs(f(1) - sinc(1)).n() < 1e-15
def AbsSIMD_check(a): return Abs(a)
def cgen_ncomp(ncomp=3, nporder=2, aggstat=False, debug=False): """Generates a C function for ncomp (int) number of components. The jth key component is always in the first position and the kth key component is always in the second. The number of enrichment stages (NP) is calculated via a taylor series approximation. The order of this approximation may be set with nporder. Only values of 1 or 2 are allowed. The aggstat argument determines whether the status messages should be aggreated and printed at the end or output as the function executes. """ start_time = time.time() stat = _aggstatus('', "generating {0} component enrichment".format(ncomp), aggstat) r = range(0, ncomp) j = 0 k = 1 # setup-symbols alpha = Symbol('alpha', positive=True, real=True) LpF = Symbol('LpF', positive=True, real=True) PpF = Symbol('PpF', positive=True, real=True) TpF = Symbol('TpF', positive=True, real=True) SWUpF = Symbol('SWUpF', positive=True, real=True) SWUpP = Symbol('SWUpP', positive=True, real=True) NP = Symbol('NP', positive=True, real=True) # Enrichment Stages NT = Symbol('NT', positive=True, real=True) # De-enrichment Stages NP0 = Symbol('NP0', positive=True, real=True) # Enrichment Stages Initial Guess NT0 = Symbol('NT0', positive=True, real=True) # De-enrichment Stages Initial Guess NP1 = Symbol('NP1', positive=True, real=True) # Enrichment Stages Computed Value NT1 = Symbol('NT1', positive=True, real=True) # De-enrichment Stages Computed Value Mstar = Symbol('Mstar', positive=True, real=True) MW = [Symbol('MW[{0}]'.format(i), positive=True, real=True) for i in r] beta = [alpha**(Mstar - MWi) for MWi in MW] # np_closed helper terms NP_b = Symbol('NP_b', real=True) NP_2a = Symbol('NP_2a', real=True) NP_sqrt_base = Symbol('NP_sqrt_base', real=True) xF = [Symbol('xF[{0}]'.format(i), positive=True, real=True) for i in r] xPi = [Symbol('xP[{0}]'.format(i), positive=True, real=True) for i in r] xTi = [Symbol('xT[{0}]'.format(i), positive=True, real=True) for i in r] xPj = Symbol('xPj', positive=True, real=True) xFj = xF[j] xTj = Symbol('xTj', positive=True, real=True) ppf = (xFj - xTj) / (xPj - xTj) tpf = (xFj - xPj) / (xTj - xPj) xP = [(((xF[i]/ppf)*(beta[i]**(NT+1) - 1))/(beta[i]**(NT+1) - beta[i]**(-NP))) \ for i in r] xT = [(((xF[i]/tpf)*(1 - beta[i]**(-NP)))/(beta[i]**(NT+1) - beta[i]**(-NP))) \ for i in r] rfeed = xFj / xF[k] rprod = xPj / xP[k] rtail = xTj / xT[k] # setup constraint equations numer = [ ppf * xP[i] * log(rprod) + tpf * xT[i] * log(rtail) - xF[i] * log(rfeed) for i in r ] denom = [log(beta[j]) * ((beta[i] - 1.0) / (beta[i] + 1.0)) for i in r] LoverF = sum([n / d for n, d in zip(numer, denom)]) SWUoverF = -1.0 * sum(numer) SWUoverP = SWUoverF / ppf prod_constraint = (xPj/xFj)*ppf - (beta[j]**(NT+1) - 1)/\ (beta[j]**(NT+1) - beta[j]**(-NP)) tail_constraint = (xTj/xFj)*(sum(xT)) - (1 - beta[j]**(-NP))/\ (beta[j]**(NT+1) - beta[j]**(-NP)) #xp_constraint = 1.0 - sum(xP) #xf_constraint = 1.0 - sum(xF) #xt_constraint = 1.0 - sum(xT) # This is NT(NP,...) and is correct! #nt_closed = solve(prod_constraint, NT)[0] # However, this is NT(NP,...) rewritten (by hand) to minimize the number of NP # and M* instances in the expression. Luckily this is only depends on the key # component and remains general no matter the number of components. nt_closed = (-MW[0]*log(alpha) + Mstar*log(alpha) + log(xTj) + log((-1.0 + xPj/\ xF[0])/(xPj - xTj)) - log(alpha**(NP*(MW[0] - Mstar))*(xF[0]*xPj - xPj*xTj)/\ (-xF[0]*xPj + xF[0]*xTj) + 1))/((MW[0] - Mstar)*log(alpha)) # new expression for normalized flow rate # NOTE: not needed, solved below #loverf = LoverF.xreplace({NT: nt_closed}) # Define the constraint equation with which to solve NP. This is chosen such to # minimize the number of ops in the derivatives (and thus np_closed). Other, # more verbose possibilities are commented out. #np_constraint = (xP[j]/sum(xP) - xPj).xreplace({NT: nt_closed}) #np_constraint = (xP[j]- sum(xP)*xPj).xreplace({NT: nt_closed}) #np_constraint = (xT[j]/sum(xT) - xTj).xreplace({NT: nt_closed}) np_constraint = (xT[j] - sum(xT) * xTj).xreplace({NT: nt_closed}) # get closed form approximation of NP via symbolic derivatives stat = _aggstatus(stat, " order-{0} NP approximation".format(nporder), aggstat) d0NP = np_constraint.xreplace({NP: NP0}) d1NP = diff(np_constraint, NP, 1).xreplace({NP: NP0}) if 1 == nporder: np_closed = NP0 - d1NP / d0NP elif 2 == nporder: d2NP = diff(np_constraint, NP, 2).xreplace({NP: NP0}) / 2.0 # taylor series polynomial coefficients, grouped by order # f(x) = ax**2 + bx + c a = d2NP b = d1NP - 2 * NP0 * d2NP c = d0NP - NP0 * d1NP + NP0 * NP0 * d2NP # quadratic eq. (minus only) #np_closed = (-b - sqrt(b**2 - 4*a*c)) / (2*a) # However, we need to break up this expr as follows to prevent # a floating point arithmetic bug if b**2 - 4*a*c is very close # to zero but happens to be negative. LAME!!! np_2a = 2 * a np_sqrt_base = b**2 - 4 * a * c np_closed = (-NP_b - sqrt(NP_sqrt_base)) / (NP_2a) else: raise ValueError("nporder must be 1 or 2") # generate cse for writing out msg = " minimizing ops by eliminating common sub-expressions" stat = _aggstatus(stat, msg, aggstat) exprstages = [ Eq(NP_b, b), Eq(NP_2a, np_2a), # fix for floating point sqrt() error Eq(NP_sqrt_base, np_sqrt_base), Eq(NP_sqrt_base, Abs(NP_sqrt_base)), Eq(NP1, np_closed), Eq(NT1, nt_closed).xreplace({NP: NP1}) ] cse_stages = cse(exprstages, numbered_symbols('n')) exprothers = [Eq(LpF, LoverF), Eq(PpF, ppf), Eq(TpF, tpf), Eq(SWUpF, SWUoverF), Eq(SWUpP, SWUoverP)] + \ [Eq(*z) for z in zip(xPi, xP)] + [Eq(*z) for z in zip(xTi, xT)] exprothers = [e.xreplace({NP: NP1, NT: NT1}) for e in exprothers] cse_others = cse(exprothers, numbered_symbols('g')) exprops = count_ops(exprstages + exprothers) cse_ops = count_ops(cse_stages + cse_others) msg = " reduced {0} ops to {1}".format(exprops, cse_ops) stat = _aggstatus(stat, msg, aggstat) # create function body ccode, repnames = cse_to_c(*cse_stages, indent=6, debug=debug) ccode_others, repnames_others = cse_to_c(*cse_others, indent=6, debug=debug) ccode += ccode_others repnames |= repnames_others msg = " completed in {0:.3G} s".format(time.time() - start_time) stat = _aggstatus(stat, msg, aggstat) if aggstat: print(stat) return ccode, repnames, stat
def nrpyAbsSIMD_check(a): return Abs(a)
def test_signsimp(): e = x * (-x + 1) + x * (x - 1) assert signsimp(Eq(e, 0)) is S.true assert Abs(x - 1) == Abs(1 - x) assert signsimp(y - x) == y - x assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_ellipse(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x2) p4 = Point(0, 1) p5 = Point(-1, 0) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) # Test creation with three points cen, rad = Point(3 * half, 2), 5 * half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))") # Basic Stuff assert e1 == c1 assert e1 != e2 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi / 2 assert e3.area == pi * (y1**2) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2 * pi * y1 a = Symbol('a') b = Symbol('b') e5 = Ellipse(p1, a, b) assert e5.circumference == 4*a*C.Integral(((1 - x**2*Abs(b**2 - a**2)/a**2)/(1 - x**2))**(S(1)/2),\ (x, 0, 1)) assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_line(p4) == c1.tangent_line(p4) assert e2.tangent_line(p1_2) == Line(p1_2, p2 + Point(half, 1)) assert e2.tangent_line(p1_3) == Line(p1_3, p2 + Point(half, 1)) assert c1.tangent_line(p1_1) == Line(p1_1, Point(0, sqrt(2))) assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [ Point(sqrt(2) / 2, sqrt(2) / 2), Point(-sqrt(2) / 2, -sqrt(2) / 2) ] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) in [[(1, 0), (0, 1)], [(0, 1), (1, 0)]] assert intersection(c1, c3) == [(sqrt(2) / 2, sqrt(2) / 2)] # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v / 2, v / 2) in points assert Point(v / 2, -v / 2) in points e1 = Circle(Point(0, 0), 5) e2 = Ellipse(Point(0, 0), 5, 20) assert intersection(e1, e2) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] # FAILING ELLIPSE INTERSECTION GOES HERE # Combinations of above assert e3.is_tangent(e3.tangent_line(p1 + Point(y1, 0))) major = 3 minor = 1 e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(abs(major**2 - minor**2)) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major * (1 - ecc) assert e4.apoapsis == major * (1 + ecc)
def _Abs(a): return Abs(a, evaluate=False)
def test_polygon(): p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == Rational(6) assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Real("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Real("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Real("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Real("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * 2**(S(1) / 2) / 2 assert t2.inradius == 5 * 3**(S(1) / 2) / 6 t3_inradius = (2 * x1**2 * Abs(x1) - 2**(S(1) / 2) * x1**2 * Abs(x1)) / (2 * x1**2) assert simplify((t3.inradius - t3_inradius)) == 0 # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) p5 = Polygon(Point(half, 3**(half) / 2), Point(-half, 3**(half) / 2), Point(-1, 0), Point(-half, -(3)**(half) / 2), Point(half, -(3)**(half) / 2), Point(1, 0)) p6 = Polygon(Point(2, Rational(3) / 10), Point(Rational(17) / 10, 0), Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 '''Polygon to Polygon''' assert p1.distance(p2) == half / 2 assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2) assert p5.distance(p6) == Rational(7) / 10
def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) """ from sympy.core.function import diff from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree, lcm_list def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if isinstance(f, TrigonometricFunction): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) #check if 'f' is linear in 'symbol' elif degree(a, symbol) == 1 and symbol not in n.free_symbols: period = Abs(n / a.diff(symbol)) elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None
def test_isolve_Sets(): n = Dummy('n') assert isolve(Abs(x) <= n, x, relational=False) == \ Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
def _eval_Abs(self): scale_factor = Abs(self.scale_factor) if scale_factor == self.scale_factor: return self return None q = self.func(self.name, self.abbrev)
def test_sign(): assert sign(1.2) == 1 assert sign(-1.2) == -1 assert sign(3 * I) == I assert sign(-3 * I) == -I assert sign(0) == 0 assert sign(nan) == nan assert sign(2 + 2 * I).doit() == sqrt(2) * (2 + 2 * I) / 4 assert sign(2 + 3 * I).simplify() == sign(2 + 3 * I) assert sign(2 + 2 * I).simplify() == sign(1 + I) assert sign(im(sqrt(1 - sqrt(3)))) == 1 assert sign(sqrt(1 - sqrt(3))) == I x = Symbol('x') assert sign(x).is_finite is True assert sign(x).is_complex is True assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_real is None assert sign(x).is_zero is None assert sign(x).doit() == sign(x) assert sign(1.2 * x) == sign(x) assert sign(2 * x) == sign(x) assert sign(I * x) == I * sign(x) assert sign(-2 * I * x) == -I * sign(x) assert sign(conjugate(x)) == conjugate(sign(x)) p = Symbol('p', positive=True) n = Symbol('n', negative=True) m = Symbol('m', negative=True) assert sign(2 * p * x) == sign(x) assert sign(n * x) == -sign(x) assert sign(n * m * x) == sign(x) x = Symbol('x', imaginary=True) assert sign(x).is_imaginary is True assert sign(x).is_integer is False assert sign(x).is_real is False assert sign(x).is_zero is False assert sign(x).diff(x) == 2 * DiracDelta(-I * x) assert sign(x).doit() == x / Abs(x) assert conjugate(sign(x)) == -sign(x) x = Symbol('x', real=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is None assert sign(x).diff(x) == 2 * DiracDelta(x) assert sign(x).doit() == sign(x) assert conjugate(sign(x)) == sign(x) x = Symbol('x', nonzero=True) assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_real is None assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = Symbol('x', positive=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = 0 assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is True assert sign(x).doit() == 0 assert sign(Abs(x)) == 0 assert Abs(sign(x)) == 0 nz = Symbol('nz', nonzero=True, integer=True) assert sign(nz).is_imaginary is False assert sign(nz).is_integer is True assert sign(nz).is_real is True assert sign(nz).is_zero is False assert sign(nz)**2 == 1 assert (sign(nz)**3).args == (sign(nz), 3) assert sign(Symbol('x', nonnegative=True)).is_nonnegative assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None assert sign(Symbol('x', nonpositive=True)).is_nonpositive assert sign(Symbol('x', real=True)).is_nonnegative is None assert sign(Symbol('x', real=True)).is_nonpositive is None assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None x, y = Symbol('x', real=True), Symbol('y') assert sign(x).rewrite(Piecewise) == \ Piecewise((1, x > 0), (-1, x < 0), (0, True)) assert sign(y).rewrite(Piecewise) == sign(y) assert sign(x).rewrite(Heaviside) == 2 * Heaviside(x) - 1 assert sign(y).rewrite(Heaviside) == sign(y) # evaluate what can be evaluated assert sign(exp_polar(I * pi) * pi) is S.NegativeOne eq = -sqrt(10 + 6 * sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3 * sqrt(3)) # if there is a fast way to know when and when you cannot prove an # expression like this is zero then the equality to zero is ok assert sign(eq).func is sign or sign(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2 * sqrt(3) + 1331 * sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert sign(d).func is sign or sign(d) == 0
def test_polygon(): t = Triangle(Point(0, 0), Point(2, 0), Point(3, 3)) assert Polygon(Point(0, 0), Point(1, 0), Point(2, 0), Point(3, 3)) == t assert Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(0, 0)) == t assert Polygon(Point(2, 0), Point(3, 3), Point(0, 0), Point(1, 0)) == t p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) # # General polygon # assert p1 == p2 assert len(p1) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert p3.is_convex() assert p4.is_convex( ) # ensure convex for both CW and CCW point specification # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) assert p1 != p2 assert p1.interior_angle == 3 * pi / 5 assert p1.exterior_angle == 2 * pi / 5 assert p2.apothem == 5 * cos(pi / 5) assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p1.is_convex() assert p1.rotation == 0 p1.spin(pi / 3) assert p1.rotation == pi / 3 assert p1[0] == Point(5, 5 * sqrt(3)) # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3) assert p1 == p1_old # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides s2 = t2.sides s3 = t3.sides # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() == False assert t3.is_right() assert p1 in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf() / 2) assert t1.is_equilateral() == False assert t2.is_equilateral() assert t3.is_equilateral() == False assert are_similar(t1, t2) == False assert are_similar(t1, t3) assert are_similar(t2, t3) == False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125 * sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == 5 - 5 * sqrt(2) / 2 assert t2.inradius == 5 * sqrt(3) / 6 assert t3.inradius == x1**2 / ((2 + sqrt(2)) * Abs(x1)) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2] == s1[0] assert altitudes[p3] == s1[2] # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon(Point(0, Rational(5) / 4), Point(1, Rational(5) / 4), Point(1, Rational(9) / 4), Point(0, Rational(9) / 4)) p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1), Point(1, Rational(6) / 5)) p5 = Polygon(Point(half, 3**(half) / 2), Point(-half, 3**(half) / 2), Point(-1, 0), Point(-half, -(3)**(half) / 2), Point(half, -(3)**(half) / 2), Point(1, 0)) p6 = Polygon(Point(2, Rational(3) / 10), Point(Rational(17) / 10, 0), Point(2, -Rational(3) / 10), Point(Rational(23) / 10, 0)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3) / 4 assert p3.distance(pt2) == sqrt(2) / 2 '''Polygon to Polygon''' import warnings # p1.distance(p2) emits a warning # First, test the warning warnings.filterwarnings( "error", "Polygons may intersect producing erroneous output") raises(UserWarning, "p1.distance(p2)") # now test the actual output warnings.filterwarnings( "ignore", "Polygons may intersect producing erroneous output") assert p1.distance(p2) == half / 2 # Keep testing reasonably thread safe, so reset the warning warnings.filterwarnings( "default", "Polygons may intersect producing erroneous output") # Note, in Python 2.6+, this can be done more nicely using the # warnings.catch_warnings context manager. # See http://docs.python.org/library/warnings#testing-warnings. assert p1.distance(p3) == sqrt(2) / 2 assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2) assert p5.distance(p6) == Rational(7) / 10
def test_Abs(): x, y = symbols('x,y') assert sign(sign(x)) == sign(x) assert sign(x * y).func is sign assert Abs(0) == 0 assert Abs(1) == 1 assert Abs(-1) == 1 assert Abs(I) == 1 assert Abs(-I) == 1 assert Abs(nan) == nan assert Abs(I * pi) == pi assert Abs(-I * pi) == pi assert Abs(I * x) == Abs(x) assert Abs(-I * x) == Abs(x) assert Abs(-2 * x) == 2 * Abs(x) assert Abs(-2.0 * x) == 2.0 * Abs(x) assert Abs(2 * pi * x * y) == 2 * pi * Abs(x * y) assert Abs(conjugate(x)) == Abs(x) assert conjugate(Abs(x)) == Abs(x) a = Symbol('a', positive=True) assert Abs(2 * pi * x * a) == 2 * pi * a * Abs(x) assert Abs(2 * pi * I * x * a) == 2 * pi * a * Abs(x) x = Symbol('x', real=True) n = Symbol('n', integer=True) assert Abs((-1)**n) == 1 assert x**(2 * n) == Abs(x)**(2 * n) assert Abs(x).diff(x) == sign(x) assert abs(x) == Abs(x) # Python built-in assert Abs(x)**3 == x**2 * Abs(x) assert Abs(x)**4 == x**4 assert (Abs(x)**(3 * n)).args == (Abs(x), 3 * n ) # leave symbolic odd unchanged assert (1 / Abs(x)).args == (Abs(x), -1) assert 1 / Abs(x)**3 == 1 / (x**2 * Abs(x)) x = Symbol('x', imaginary=True) assert Abs(x).diff(x) == -sign(x) eq = -sqrt(10 + 6 * sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3 * sqrt(3)) # if there is a fast way to know when you can and when you cannot prove an # expression like this is zero then the equality to zero is ok assert abs(eq).func is Abs or abs(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2 * sqrt(3) + 1331 * sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert abs(d).func is Abs or abs(d) == 0