示例#1
0
def test_expand_mul():
    # part of issue 20597
    e = Mul(2, 3, evaluate=False)
    assert e.expand() == 6

    e = Mul(2, 3, 1 / x, evaluate=False)
    assert e.expand() == 6 / x
    e = Mul(2, R(1, 3), evaluate=False)
    assert e.expand() == R(2, 3)
示例#2
0
def test_expand_radicals():
    a = (x + y)**R(1, 2)

    assert (a**1).expand() == a
    assert (a**3).expand() == x*a + y*a
    assert (a**5).expand() == x**2*a + 2*x*y*a + y**2*a

    assert (1/a**1).expand() == 1/a
    assert (1/a**3).expand() == 1/(x*a + y*a)
    assert (1/a**5).expand() == 1/(x**2*a + 2*x*y*a + y**2*a)

    a = (x + y)**R(1, 3)

    assert (a**1).expand() == a
    assert (a**2).expand() == a**2
    assert (a**4).expand() == x*a + y*a
    assert (a**5).expand() == x*a**2 + y*a**2
    assert (a**7).expand() == x**2*a + 2*x*y*a + y**2*a
示例#3
0
def test_issues_5919_6830():
    # issue 5919
    n = -1 + 1 / x
    z = n / x / (-n)**2 - 1 / n / x
    assert expand(
        z) == 1 / (x**2 - 2 * x + 1) - 1 / (x - 2 + 1 / x) - 1 / (-x + 1)

    # issue 6830
    p = (1 + x)**2
    assert expand_multinomial(
        (1 + x * p)**2) == (x**2 * (x**4 + 4 * x**3 + 6 * x**2 + 4 * x + 1) +
                            2 * x * (x**2 + 2 * x + 1) + 1)
    assert expand_multinomial(
        (1 + (y + x) * p)**2) == (2 * ((x + y) * (x**2 + 2 * x + 1)) +
                                  (x**2 + 2 * x * y + y**2) *
                                  (x**4 + 4 * x**3 + 6 * x**2 + 4 * x + 1) + 1)
    A = Symbol('A', commutative=False)
    p = (1 + A)**2
    assert expand_multinomial(
        (1 + x * p)**2) == (x**2 * (1 + 4 * A + 6 * A**2 + 4 * A**3 + A**4) +
                            2 * x * (1 + 2 * A + A**2) + 1)
    assert expand_multinomial(
        (1 + (y + x) * p)**2) == ((x + y) * (1 + 2 * A + A**2) * 2 +
                                  (x**2 + 2 * x * y + y**2) *
                                  (1 + 4 * A + 6 * A**2 + 4 * A**3 + A**4) + 1)
    assert expand_multinomial((1 + (y + x) * p)**3) == (
        (x + y) * (1 + 2 * A + A**2) * 3 + (x**2 + 2 * x * y + y**2) *
        (1 + 4 * A + 6 * A**2 + 4 * A**3 + A**4) * 3 +
        (x**3 + 3 * x**2 * y + 3 * x * y**2 + y**3) *
        (1 + 6 * A + 15 * A**2 + 20 * A**3 + 15 * A**4 + 6 * A**5 + A**6) + 1)
    # unevaluate powers
    eq = (Pow((x + 1) * ((A + 1)**2), 2, evaluate=False))
    # - in this case the base is not an Add so no further
    #   expansion is done
    assert expand_multinomial(eq) == \
        (x**2 + 2*x + 1)*(1 + 4*A + 6*A**2 + 4*A**3 + A**4)
    # - but here, the expanded base *is* an Add so it gets expanded
    eq = (Pow(((A + 1)**2), 2, evaluate=False))
    assert expand_multinomial(eq) == 1 + 4 * A + 6 * A**2 + 4 * A**3 + A**4

    # coverage
    def ok(a, b, n):
        e = (a + I * b)**n
        return verify_numerically(e, expand_multinomial(e))

    for a in [2, S.Half]:
        for b in [3, R(1, 3)]:
            for n in range(2, 6):
                assert ok(a, b, n)

    assert expand_multinomial((x + 1 + O(z))**2) == \
        1 + 2*x + x**2 + O(z)
    assert expand_multinomial((x + 1 + O(z))**3) == \
        1 + 3*x + 3*x**2 + x**3 + O(z)

    assert expand_multinomial(3**(x + y + 3)) == 27 * 3**(x + y)
示例#4
0
def test_expand_arit():
    a = Symbol("a")
    b = Symbol("b", positive=True)
    c = Symbol("c")

    p = R(5)
    e = (a + b)*c
    assert e == c*(a + b)
    assert (e.expand() - a*c - b*c) == R(0)
    e = (a + b)*(a + b)
    assert e == (a + b)**2
    assert e.expand() == 2*a*b + a**2 + b**2
    e = (a + b)*(a + b)**R(2)
    assert e == (a + b)**3
    assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
    assert e.expand() == 3*b*a**2 + 3*a*b**2 + a**3 + b**3
    e = (a + b)*(a + c)*(b + c)
    assert e == (a + c)*(a + b)*(b + c)
    assert e.expand() == 2*a*b*c + b*a**2 + c*a**2 + b*c**2 + a*c**2 + c*b**2 + a*b**2
    e = (a + R(1))**p
    assert e == (1 + a)**5
    assert e.expand() == 1 + 5*a + 10*a**2 + 10*a**3 + 5*a**4 + a**5
    e = (a + b + c)*(a + c + p)
    assert e == (5 + a + c)*(a + b + c)
    assert e.expand() == 5*a + 5*b + 5*c + 2*a*c + b*c + a*b + a**2 + c**2
    x = Symbol("x")
    s = exp(x*x) - 1
    e = s.nseries(x, 0, 3)/x**2
    assert e.expand() == 1 + x**2/2 + O(x**4)

    e = (x*(y + z))**(x*(y + z))*(x + y)
    assert e.expand(power_exp=False, power_base=False) == x*(x*y + x*
                    z)**(x*y + x*z) + y*(x*y + x*z)**(x*y + x*z)
    assert e.expand(power_exp=False, power_base=False, deep=False) == x* \
        (x*(y + z))**(x*(y + z)) + y*(x*(y + z))**(x*(y + z))
    e = x * (x + (y + 1)**2)
    assert e.expand(deep=False) == x**2 + x*(y + 1)**2
    e = (x*(y + z))**z
    assert e.expand(power_base=True, mul=True, deep=True) in [x**z*(y +
                    z)**z, (x*y + x*z)**z]
    assert ((2*y)**z).expand() == 2**z*y**z
    p = Symbol('p', positive=True)
    assert sqrt(-x).expand().is_Pow
    assert sqrt(-x).expand(force=True) == I*sqrt(x)
    assert ((2*y*p)**z).expand() == 2**z*p**z*y**z
    assert ((2*y*p*x)**z).expand() == 2**z*p**z*(x*y)**z
    assert ((2*y*p*x)**z).expand(force=True) == 2**z*p**z*x**z*y**z
    assert ((2*y*p*-pi)**z).expand() == 2**z*pi**z*p**z*(-y)**z
    assert ((2*y*p*-pi*x)**z).expand() == 2**z*pi**z*p**z*(-x*y)**z
    n = Symbol('n', negative=True)
    m = Symbol('m', negative=True)
    assert ((-2*x*y*n)**z).expand() == 2**z*(-n)**z*(x*y)**z
    assert ((-2*x*y*n*m)**z).expand() == 2**z*(-m)**z*(-n)**z*(-x*y)**z
    # issue 5482
    assert sqrt(-2*x*n) == sqrt(2)*sqrt(-n)*sqrt(x)
    # issue 5605 (2)
    assert (cos(x + y)**2).expand(trig=True) in [
        (-sin(x)*sin(y) + cos(x)*cos(y))**2,
        sin(x)**2*sin(y)**2 - 2*sin(x)*sin(y)*cos(x)*cos(y) + cos(x)**2*cos(y)**2
    ]

    # Check that this isn't too slow
    x = Symbol('x')
    W = 1
    for i in range(1, 21):
        W = W * (x - i)
    W = W.expand()
    assert W.has(-1672280820*x**15)
示例#5
0
__email__ = "*****@*****.**"


def getWeights(stencil):
    Q = len(stencil)

    def weightForDirection(direction):
        absSum = sum([abs(d) for d in direction])
        return getWeights.weights[Q][absSum]

    return [weightForDirection(d) for d in stencil]


getWeights.weights = {
    9: {
        0: R(4, 9),
        1: R(1, 9),
        2: R(1, 36),
    },
    15: {
        0: R(2, 9),
        1: R(1, 9),
        3: R(1, 72),
    },
    19: {
        0: R(1, 3),
        1: R(1, 18),
        2: R(1, 36),
    },
    27: {
        0: R(8, 27),
示例#6
0
def test_issue_6121():
    eq = -I*exp(-3*I*pi/4)/(4*pi**(S(3)/2)*sqrt(x))
    assert eq.expand(complex=True)  # does not give oo recursion
    eq = -I*exp(-3*I*pi/4)/(4*pi**(R(3, 2))*sqrt(x))
    assert eq.expand(complex=True)  # does not give oo recursion
示例#7
0
    def _calcMetrics(self):
        """Calculates the co and contravariant metrics"""
        #{{{Covariant g
        # Initialize covariant g
        self.g_ = {}
        # Initialize list which will be the input in the matrix
        matrix = []
        for i in cylCoord:
            # Initialize second coord
            self.g_[i] = {}
            # Initialize a row in the matrix
            row = []
            for j in cylCoord:
                self.g_[i][j] = simplify(\
                                    self.__getattribute__(str(i) + 'CovBasis')*\
                                    self.__getattribute__(str(j) + 'CovBasis')\
                                    )
                # Append the element to the row
                row.append(self.g_[i][j])
            # Append the row to the matrix
            matrix.append(row)
        # Define the matrix (makes it easy to display)
        self.covMetrics = Matrix(matrix)
        #}}}

        #{{{Contravariant g
        # Initialize contravariant g
        self.g = {}
        # Initialize list which will be the input in the matrix
        matrix = []
        for i in cylCoord:
            # Initialize second coord
            self.g[i] = {}
            # Initialize a row in the matrix
            row = []
            for j in cylCoord:
                self.g[i][j] = simplify(\
                                self.__getattribute__(str(i) + 'ConBasis')*\
                                self.__getattribute__(str(j) + 'ConBasis')\
                               )
                # Append the element to the row
                row.append(self.g[i][j])
            # Append the row to the matrix
            matrix.append(row)
        # Define the matrix (makes it easy to display)
        self.conMetrics = Matrix(matrix)
        #}}}

        #{{{ Calculate J
        # Define the jacobian
        self.J = simplify(sqrt(self.covMetrics.det()))
        #}}}

        #{{{Calculate Christoffel
        #The Christoffel symbols reads
        #$$
        #\Gamma^i_{kl}=\frac{1}{2}g^{im}
        #\left(
        #       \frac{\partial g_{mk}}{\partial x^l} + \frac{\partial
        #       g_{ml}}{\partial x^k} - \frac{\partial g_{kl}}{\partial x^m}
        # \right)
        #$$
        self.C = dict.fromkeys(cylCoord)

        for i in cylCoord:
            self.C[i] = dict.fromkeys(cylCoord)
            # Initialize list which will be the input in the matrix
            matrix = []
            for j in cylCoord:
                # Initialize a row in the matrix
                row = []
                self.C[i][j] = dict.fromkeys(cylCoord)
                for k in cylCoord:
                    self.C[i][j][k] = 0
                    for l in cylCoord:
                        self.C[i][j][k] +=\
                            R(1/2)*self.g[i][l]\
                            *(\
                                self.g_[l][j].diff(k)\
                              + self.g_[l][k].diff(j)\
                              - self.g_[j][k].diff(l)\
                             )
                    self.C[i][j][k] = simplify(self.C[i][j][k])
                    # Append the element to the row
                    row.append(self.C[i][j][k])
                # Append the row to the matrix
                matrix.append(row)
            # Define the matrix (makes it easy to display)
            self.__setattr__('C' + str(i), Matrix(matrix))
示例#8
0
 def time_expnad_radicals(self):
     (((x + y)**R(1, 2))**3).expand()
     (1 / ((x + y)**R(1, 2))**3).expand()
示例#9
0
文件: Float.py 项目: vinutah/sandbox
 def rat(self):
     return R(self.sign * self.significand * (2**self.exponent))
示例#10
0
文件: simplex.py 项目: Dresing/laexam
# coding=utf-8
from util import latex
from fractions import Fraction as f
import sympy as sy
import numpy as np
from sympy import Rational as R
from gurobipy import *
from math import *
from operator import itemgetter

A = np.array([
    [R('-20'), R('-35'),
     R('-95'), R('1'), R('0'),
     R('-319')],
    [R('-5'), R('-9'), R('-23'),
     R('0'), R('1'), R('0')],
])
A.astype('object')


class Simplex:
    def __init__(self, A):
        self.A = A
        self.height = len(A)
        self.width = len(A[0])
        self.c = A[self.height - 1]

    def primalPivot(self, i=0, doPrint=True):
        if self.c[i] <= 0:
            print "Error, cannot iterate on negative or zero c at idx: " + str(
                i)
示例#11
0
#! /usr/bin/env python3
# -*- coding: utf-8 -*-

# 2018-04-10T17:48+08:00

from sympy import Rational as R
from sympy.abc import x, y
from sympy.plotting import plot_implicit

# x^2 + y^2 = (2*x^2 + 2*y^2 - x)^2
plot_implicit(x**2 + y**2 - (2 * x**2 + 2 * y**2 - x)**2, (x, -0.5, 1.5),
              (y, -0.75, 0.75),
              title='cardioid')

# x^(2/3) + y^(2/3) = 4
plot_implicit(x**R(2, 3) + y**R(2, 3) - 4, (x, -10, 10), (y, -10, 10),
              title='astroid')

# 2*(x^2 + y^2)^2 = 25*(x^2 - y^2)
plot_implicit(2 * (x**2 + y**2)**2 - 25 * (x**2 - y**2), title='lemniscate')

# y^2*(y^2 - 4) = x^2*(x^2 - 5)
plot_implicit(y**2 * (y**2 - 4) - x**2 * (x**2 - 5), title='devil\'s curve')

# References:
# Calculus, 7ed, James.Stewart, P157