示例#1
0
def main():
  parser = argparse.ArgumentParser(
    description="Run experiments with the timely detection system.")

  parser.add_argument('--test_dataset',
    choices=['val','test','trainval'],
    default='val',
    help="""Dataset to use for testing. Run on val until final runs.
    The training dataset is inferred (val->train; test->trainval; trainval->trainval).""")

  parser.add_argument('--first_n', type=int,
    help='only take the first N images in the test dataset')

  parser.add_argument('--first_n_train', type=int,
    help='only take the first N images in the train dataset')

  parser.add_argument('--config',
    help="""Config file name that specifies the experiments to run.
    Give name such that the file is configs/#{name}.json or configs/#{name}/
    In the latter case, all files within the directory will be loaded.""")

  parser.add_argument('--suffix',
    help="Overwrites the suffix in the config(s).")

  parser.add_argument('--bounds10', action='store_true', 
    default=False, help='set bounds to [0,10]')
  
  parser.add_argument('--bounds515', action='store_true', 
    default=False, help='set bounds to [5,15]')

  parser.add_argument('--force', action='store_true', 
    default=False, help='force overwrite')

  parser.add_argument('--wholeset_prs', action='store_true', 
    default=False, help='evaluate in the final p-r regime')

  parser.add_argument('--no_apvst', action='store_true', 
    default=False, help='do NOT evaluate in the ap vs. time regime')

  parser.add_argument('--det_configs', action='store_true', 
    default=False, help='output detector statistics to det_configs')

  parser.add_argument('--inverse_prior', action='store_true', 
    default=False, help='use inverse prior class values')

  args = parser.parse_args()
  print(args)

  # If config file is not given, just run one experiment using default config
  if not args.config:
    configs = [DatasetPolicy.default_config]
  else:
    configs = load_configs(args.config)

  # Load the dataset
  dataset = Dataset('full_pascal_'+args.test_dataset)
  if args.first_n:
    dataset.images = dataset.images[:args.first_n]

  # Infer train_dataset
  if args.test_dataset=='test':
    train_dataset = Dataset('full_pascal_trainval')
  elif args.test_dataset=='val':
    train_dataset = Dataset('full_pascal_train')
  elif args.test_dataset=='trainval':
    train_dataset = Dataset('full_pascal_trainval')
  else:
    None # impossible by argparse settings
  
  # Only need to set training dataset values; evaluation gets it from there
  if args.inverse_prior:
    train_dataset.set_values('inverse_prior')

  # TODO: hack
  if args.first_n_train:
    train_dataset.images = train_dataset.images[:args.first_n_train]

  # In both the above cases, we use the val dataset for weights
  weights_dataset_name = 'full_pascal_val'

  dets_tables = []
  dets_tables_whole = []
  clses_tables_whole = []
  all_bounds = []
      
  plot_infos = [] 
  for config_f in configs:
    if args.suffix:
      config_f['suffix'] = args.suffix
    if args.bounds10:
      config_f['bounds'] = [0,10]
    if args.bounds515:
      config_f['bounds'] = [5,15]
    assert(not (args.bounds10 and args.bounds515))
    if args.inverse_prior:
      config_f['suffix'] += '_inverse_prior'
      config_f['values'] = 'inverse_prior'

    dp = DatasetPolicy(dataset, train_dataset, weights_dataset_name, **config_f)
    ev = Evaluation(dp)
    all_bounds.append(dp.bounds)
    plot_infos.append(dict((k,config_f[k]) for k in ('label','line','color') if k in config_f))
    # output the det configs first
    if args.det_configs:
      dp.output_det_statistics()

    # evaluate in the AP vs. Time regime, unless told not to
    if not args.no_apvst:
      dets_table = ev.evaluate_vs_t(None,None,force=args.force)
      #dets_table_whole,clses_table_whole = ev.evaluate_vs_t_whole(None,None,force=args.force)
      if comm_rank==0:
        dets_tables.append(dets_table)
        #dets_tables_whole.append(dets_table_whole)
        #clses_tables_whole.append(clses_table_whole)

    # optionally, evaluate in the standard PR regime
    if args.wholeset_prs:
      ev.evaluate_detections_whole(None,force=args.force)

  # and plot the comparison if multiple config files were given
  if not args.no_apvst and len(configs)>1 and comm_rank==0:
    # filename of the final plot is the config file name
    dirname = config.get_evals_dir(dataset.get_name())
    filename = args.config
    if args.inverse_prior:
      filename += '_inverse_prior'
    
    # det avg
    ff = opjoin(dirname, '%s_det_avg.png'%filename)
    ff_nl = opjoin(dirname, '%s_det_avg_nl.png'%filename)

    # make sure directory exists
    ut.makedirs(os.path.dirname(ff))
    
    Evaluation.plot_ap_vs_t(dets_tables, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos)
    Evaluation.plot_ap_vs_t(dets_tables, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos)

    if False:
      # det whole
      ff = opjoin(dirname, '%s_det_whole.png'%filename)
      ff_nl = opjoin(dirname, '%s_det_whole_nl.png'%filename)
      Evaluation.plot_ap_vs_t(dets_tables_whole, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos)
      Evaluation.plot_ap_vs_t(dets_tables_whole, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos)

      # cls whole
      ff = opjoin(dirname, '%s_cls_whole.png'%filename)
      ff_nl = opjoin(dirname, '%s_cls_whole_nl.png'%filename)
      Evaluation.plot_ap_vs_t(clses_tables_whole, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos)
      Evaluation.plot_ap_vs_t(clses_tables_whole, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos)
示例#2
0
def main():
    parser = argparse.ArgumentParser(description="Run experiments with the timely detection system.")

    parser.add_argument(
        "--test_dataset",
        choices=["val", "test", "trainval"],
        default="val",
        help="""Dataset to use for testing. Run on val until final runs.
    The training dataset is inferred (val->train; test->trainval; trainval->trainval).""",
    )

    parser.add_argument("--first_n", type=int, help="only take the first N images in the test dataset")

    parser.add_argument("--first_n_train", type=int, help="only take the first N images in the train dataset")

    parser.add_argument(
        "--config",
        help="""Config file name that specifies the experiments to run.
    Give name such that the file is configs/#{name}.json or configs/#{name}/
    In the latter case, all files within the directory will be loaded.""",
    )

    parser.add_argument("--suffix", help="Overwrites the suffix in the config(s).")

    parser.add_argument("--bounds10", action="store_true", default=False, help="set bounds to [0,10]")

    parser.add_argument("--bounds515", action="store_true", default=False, help="set bounds to [5,15]")

    parser.add_argument("--force", action="store_true", default=False, help="force overwrite")

    parser.add_argument("--wholeset_prs", action="store_true", default=False, help="evaluate in the final p-r regime")

    parser.add_argument(
        "--no_apvst", action="store_true", default=False, help="do NOT evaluate in the ap vs. time regime"
    )

    parser.add_argument(
        "--det_configs", action="store_true", default=False, help="output detector statistics to det_configs"
    )

    parser.add_argument("--inverse_prior", action="store_true", default=False, help="use inverse prior class values")

    args = parser.parse_args()
    print(args)

    # If config file is not given, just run one experiment using default config
    if not args.config:
        configs = [DatasetPolicy.default_config]
    else:
        configs = load_configs(args.config)

    # Load the dataset
    dataset = Dataset("full_pascal_" + args.test_dataset)
    if args.first_n:
        dataset.images = dataset.images[: args.first_n]

    # Infer train_dataset
    if args.test_dataset == "test":
        train_dataset = Dataset("full_pascal_trainval")
    elif args.test_dataset == "val":
        train_dataset = Dataset("full_pascal_train")
    elif args.test_dataset == "trainval":
        train_dataset = Dataset("full_pascal_trainval")
    else:
        None  # impossible by argparse settings

    # Only need to set training dataset values; evaluation gets it from there
    if args.inverse_prior:
        train_dataset.set_values("inverse_prior")

    # TODO: hack
    if args.first_n_train:
        train_dataset.images = train_dataset.images[: args.first_n_train]

    # In both the above cases, we use the val dataset for weights
    weights_dataset_name = "full_pascal_val"

    dets_tables = []
    dets_tables_whole = []
    clses_tables_whole = []
    all_bounds = []

    plot_infos = []
    for config_f in configs:
        if args.suffix:
            config_f["suffix"] = args.suffix
        if args.bounds10:
            config_f["bounds"] = [0, 10]
        if args.bounds515:
            config_f["bounds"] = [5, 15]
        assert not (args.bounds10 and args.bounds515)
        if args.inverse_prior:
            config_f["suffix"] += "_inverse_prior"
            config_f["values"] = "inverse_prior"

        dp = DatasetPolicy(dataset, train_dataset, weights_dataset_name, **config_f)
        ev = Evaluation(dp)
        all_bounds.append(dp.bounds)
        plot_infos.append(dict((k, config_f[k]) for k in ("label", "line", "color") if k in config_f))
        # output the det configs first
        if args.det_configs:
            dp.output_det_statistics()

        # evaluate in the AP vs. Time regime, unless told not to
        if not args.no_apvst:
            dets_table = ev.evaluate_vs_t(None, None, force=args.force)
            # dets_table_whole,clses_table_whole = ev.evaluate_vs_t_whole(None,None,force=args.force)
            if comm_rank == 0:
                dets_tables.append(dets_table)
                # dets_tables_whole.append(dets_table_whole)
                # clses_tables_whole.append(clses_table_whole)

        # optionally, evaluate in the standard PR regime
        if args.wholeset_prs:
            ev.evaluate_detections_whole(None, force=args.force)

    # and plot the comparison if multiple config files were given
    if not args.no_apvst and len(configs) > 1 and comm_rank == 0:
        # filename of the final plot is the config file name
        dirname = config.get_evals_dir(dataset.get_name())
        filename = args.config
        if args.inverse_prior:
            filename += "_inverse_prior"

        # det avg
        ff = opjoin(dirname, "%s_det_avg.png" % filename)
        ff_nl = opjoin(dirname, "%s_det_avg_nl.png" % filename)

        # make sure directory exists
        ut.makedirs(os.path.dirname(ff))

        Evaluation.plot_ap_vs_t(dets_tables, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos)
        Evaluation.plot_ap_vs_t(dets_tables, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos)

        if False:
            # det whole
            ff = opjoin(dirname, "%s_det_whole.png" % filename)
            ff_nl = opjoin(dirname, "%s_det_whole_nl.png" % filename)
            Evaluation.plot_ap_vs_t(
                dets_tables_whole, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos
            )
            Evaluation.plot_ap_vs_t(
                dets_tables_whole, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos
            )

            # cls whole
            ff = opjoin(dirname, "%s_cls_whole.png" % filename)
            ff_nl = opjoin(dirname, "%s_cls_whole_nl.png" % filename)
            Evaluation.plot_ap_vs_t(
                clses_tables_whole, ff, all_bounds, with_legend=True, force=True, plot_infos=plot_infos
            )
            Evaluation.plot_ap_vs_t(
                clses_tables_whole, ff_nl, all_bounds, with_legend=False, force=True, plot_infos=plot_infos
            )
示例#3
0
def main():
  parser = argparse.ArgumentParser(description='Execute different functions of our system')
  parser.add_argument('mode',
    choices=[
      'window_stats', 'evaluate_metaparams', 'evaluate_jw',
      'evaluate_get_pos_windows', 'train_svm',
      'extract_sift','extract_assignments','extract_codebook',
      'evaluate_jw_grid', 'final_metaparams',
      'assemble_dpm_dets','ctfdet','assemble_ctf_dets'
      ])
  parser.add_argument('--test_dataset', choices=['val','test','train'],
      default='test', help='dataset to use for testing. the training dataset \
      is automatically inferred (val->train and test->trainval).')
  parser.add_argument('--first_n', type=int,
      help='only take the first N images in the datasets')
  parser.add_argument('--bounds', type=str,
      help='the start_time and deadline_time for the ImagePolicy and corresponding evaluation. ex: (1,5)')
  parser.add_argument('--name', help='name for this run')
  parser.add_argument('--priors', default='random', help= \
      "list of choice for the policy for selecting the next action. choose from random, oracle,fixed_order, no_smooth, backoff. ex: --priors=random,oracle,no_smooth")
  parser.add_argument('--compare_evals', action='store_true', 
      default=False, help='plot all the priors modes given on same plot'),
  parser.add_argument('--detector', choices=['perfect','perfect_with_noise', 'dpm','ctf'],
      default='perfect', help='detector type')
  parser.add_argument('--force', action='store_true', 
      default=False, help='force overwrite')
  parser.add_argument('--gist', action='store_true', 
      default=False, help='use GIST as one of the actions')
  parser.add_argument('--clear_tmp', action='store_true', 
      default=False, help='clear the cached windows folder before running'),
  parser.add_argument('--feature_type', choices=['sift','dsift'], 
      default='dsift', help='use this feature type'),
  parser.add_argument('--kernel', choices=['chi2','rbf'], 
      default='chi2', help='kernel to train svm on'),
      
  args = parser.parse_args()
  if args.priors:
    args.priors = args.priors.split(',')
  if args.bounds:
    args.bounds = [float(x) for x in re.findall(r'\d+', args.bounds)]
    assert(len(args.bounds)==2)
  print(args)

  # Load the dataset
  dataset = Dataset('full_pascal_'+args.test_dataset)
  if args.first_n:
    dataset.images = dataset.images[:args.first_n]

  # Infer train_dataset
  if args.test_dataset=='test':
    train_dataset = Dataset('full_pascal_trainval')
  elif args.test_dataset=='val':
    train_dataset = Dataset('full_pascal_train')
  else:
    print("Impossible, setting train_dataset to dataset")
    train_dataset = dataset
  
  # Create window generator
  sw = SlidingWindows(dataset,train_dataset)

  if args.clear_tmp:
    dirname = config.get_sliding_windows_cached_dir(train_dataset.get_name())
    shutil.rmtree(dirname)
    dirname = config.get_sliding_windows_cached_dir(dataset.get_name())
    shutil.rmtree(dirname)

  if args.mode=='assemble_dpm_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,suffix='dpm_may25')

  if args.mode=='assemble_ctf_dets':
    policy = DatasetPolicy(dataset,train_dataset,sw)
    dets = policy.load_ext_detections(dataset,'ctf','ctf_default')
    dets = policy.load_ext_detections(dataset,'ctf','ctf_nohal')
    dets = policy.load_ext_detections(dataset,'ctf', 'ctf_halfsize')

  if args.mode=='evaluate_get_pos_windows':
    evaluate_get_pos_windows(train_dataset)
    return

  if args.mode=='window_stats':
    "Compute and plot the statistics of ground truth window parameters."
    results = SlidingWindows.get_dataset_window_stats(train_dataset,plot=True)

  if args.mode=='ctfdet':
    """Run Pedersoli's detector on the dataset and assemble into one Table."""
    run_pedersoli(dataset)

  if args.mode=='evaluate_jw':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    # TODO hack: both sw and jw should subclass something like WindowGenerator
    jw = JumpingWindowsDetector(use_scale=True)
    sw.jw = jw
    #classes = dataset.classes
    classes = ['car']
#    classes = ['bicycle' ,'car','horse', 'sofa',\
#               'bird',  'chair',     'motorbike', 'train',\
#               'boat',  'cow',       'person',    'tvmonitor',\
#               'bottle','diningtable',  'pottedplant',\
#               'bus','dog'     ,'sheep']
    for cls_idx in range(comm_rank, len(classes), comm_size):
    #for cls in dataset.classes:
      cls = classes[cls_idx]
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)
  
  if args.mode=='evaluate_jw_grid':
    """
    Evaluate the jumping window approach by producing plots of recall vs.
    #windows.
    """
    sw = SlidingWindows(dataset,train_dataset)
    jw = JumpingWindowsDetectorGrid()
    sw.jw = jw
    for cls in dataset.classes:
      dirname = config.get_jumping_windows_dir(dataset.get_name())
      filename = os.path.join(dirname,'%s'%cls)
      if os.path.isfile(config.data_dir + 'JumpingWindows/'+cls):
        sw.evaluate_recall(cls, filename, metaparams=None, mode='jw', plot=True)

  if args.mode=='train_svm':
    randomize = not os.path.exists('/home/tobibaum')
    
    d = Dataset('full_pascal_train')
    dtest = Dataset('full_pascal_val')  
    e = Extractor()  
    classes = config.pascal_classes  
    num_words = 3000
    iters = 5
    feature_type = 'dsift'
    codebook_samples = 15
    num_pos = 'max'
    testsize = 'max'
    if args.first_n:
      num_pos = args.first_n
      testsize = 1.5*num_pos
     
    kernel = args.kernel
    
    if comm_rank == 0:
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/codebooks/times/')
      ut.makedirs(config.data_dir + 'features/' + feature_type + '/svms/train_times/')
      
    for cls_idx in range(comm_rank, len(classes), comm_size): 
    #for cls in classes:
      cls = classes[cls_idx]
      codebook = e.get_codebook(d, feature_type)
      pos_arr = d.get_pos_windows(cls)
      
      neg_arr = d.get_neg_windows(pos_arr.shape[0], cls, max_overlap=0)
      
      if not num_pos == 'max':    
        if not randomize:
          pos_arr = pos_arr[:num_pos]
          neg_arr = pos_arr[:num_pos]
        else:
          rand = np.random.random_integers(0, pos_arr.shape[0] - 1, size=num_pos)
          pos_arr = pos_arr[rand]
          rand = np.random.random_integers(0, neg_arr.shape[0] - 1, size=num_pos)
          neg_arr = neg_arr[rand]     
      pos_table = Table(pos_arr, ['x','y','w','h','img_ind'])
      neg_table = Table(neg_arr, pos_table.cols)      
      train_with_hard_negatives(d, dtest,  num_words,codebook_samples,codebook,\
                                cls, pos_table, neg_table,feature_type, \
                                iterations=iters, kernel=kernel, L=2, \
                                testsize=testsize,randomize=randomize)

  if args.mode=='evaluate_metaparams':
    """
    Grid search over metaparams values for get_windows_new, with the AUC of
    recall vs. # windows evaluation.
    """
    sw.grid_search_over_metaparams()
    return

  if args.mode=='final_metaparams':
    dirname = config.get_sliding_windows_metaparams_dir(train_dataset.get_name())
    # currently these are the best auc/complexity params
    best_params_for_classes = [
        (62,15,12,'importance',0), #aeroplane
        (83,15,12,'importance',0), #bicycle
        (62,15,12,'importance',0), #bird
        (62,15,12,'importance',0), #boat
        (125,12,12,'importance',0), #bottle
        (83,12,9,'importance',0), #bus
        (125,15,9,'importance',0), #car
        (125,12,12,'linear',0), #cat
        (125,15,9,'importance',0), #chair
        (125,9,6,'importance',0), #cow
        (125,15,6,'linear',0), #diningtable
        (62,15,12,'importance',0), #dog
        (83,15,6,'importance',0), #horse
        (83,12,6,'importance',0), #motorbike
        (83,15,12,'importance',0), #person
        (83,15,6,'importance',0), #pottedplant
        (83,15,12,'importance',0), #sheep
        (83,9,6,'importance',0), #sofa
        (62,12,6,'importance',0), #train
        (62,12,12,'importance',0), #tvmonitor
        (125,9,12,'importance',0) #all
        ]
    # ACTUALLY THEY ARE ALL THE SAME!
    cheap_params = (62, 9, 6, 'importance', 0)
    for i in range(comm_rank,dataset.num_classes(),comm_size):
      cls = dataset.classes[i]
      best_params = best_params_for_classes[i]
      #samples,num_scales,num_ratios,mode,priority,cls = cheap_params

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 0 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)

      metaparams = {
        'samples_per_500px': samples,
        'num_scales': num_scales,
        'num_ratios': num_ratios,
        'mode': mode,
        'priority': 1 }
      filename = '%s_%d_%d_%d_%s_%d'%(
          cls,
          metaparams['samples_per_500px'],
          metaparams['num_scales'],
          metaparams['num_ratios'],
          metaparams['mode'],
          metaparams['priority'])
      filename = os.path.join(dirname,filename)

      tables = sw.evaluate_recall(cls,filename,metaparams,'sw',plot=True,force=False)
    return

  if args.mode=='extract_sift':
    e=Extractor()
    e.extract_all(['sift'], ['full_pascal_trainval','full_pascal_test'], 0, 0) 
    
  if args.mode=='extract_assignments':
    e=Extractor()
    feature_type = 'sift'
    for image_set in ['full_pascal_trainval','full_pascal_test']:
      d = Dataset(image_set)
      codebook = e.get_codebook(d, feature_type)  
      print 'codebook loaded'
      
      for img_ind in range(comm_rank,len(d.images),comm_size):
        img = d.images[img_ind]
      #for img in d.images:
        e.get_assignments(np.array([0,0,img.size[0],img.size[1]]), feature_type, \
                          codebook, img)

  if args.mode=='extract_codebook':
    d = Dataset('full_pascal_trainval')
    e = Extractor()
    codebook = e.get_codebook(d, args.feature_type)