def viirs_sst(infile, outdir, vmin=None, vmax=None, contrast='relative', ngcps=(41, 32), denoise_kernel='boxcar', denoise_width=27, open_iterations=1, nprocs=1, pngkml=False, write_netcdf=False, file_range=None): """ """ dic = None # Check file containing ranges if file_range is not None: if not os.path.isfile(file_range): raise Exception('file_range {} not found'.format(file_range)) # Read a txt file which contains three columns: yearday,vmin,vmax with open(file_range, 'r') as f: dic = {} for line in f: (fdoy, fmin, fmax) = line.split(',') dic[int(fdoy)] = (float(fmin), float(fmax)) if contrast == 'med': listbox = [[-6., 35., 2.75, 42.48], [2.74, 30, 42.2, 47.00]] elif contrast == 'cwe': listbox = [[-23., 35.2, -5.5, 42.88], [-23., 42.8, 2.20, 51.]] elif contrast == 'nwe': listbox = [[-23., 50.8, 32.7, 68.]] elif contrast == 'gom': listbox = [[-98., 18.0, -80.5, 30.5]] elif contrast == 'agulhas': listbox = [[10.8437, -45.7404, 39.9799, -25.3019]] elif contrast == 'gs': listbox = [[-81.52, 20, -30, 45]] else: listbox = None # Read/Process data print 'Read/Process data' dataset = Dataset(infile) start_time = datetime.strptime(dataset.start_time, '%Y%m%dT%H%M%SZ') print start_time.day print start_time.month stop_time = datetime.strptime(dataset.stop_time, '%Y%m%dT%H%M%SZ') lon = dataset.variables['lon'][:, :] lat = dataset.variables['lat'][:, :] sst = np.ma.array(dataset.variables['sea_surface_temperature'][0, :, :]) _bt11= dataset.variables['brightness_temperature_11um'][0, :, :] bt11 = np.ma.array(_bt11) quality_level = np.ma.array(dataset.variables['quality_level'][0, :, :]) ''' if file_shape is not None: with open(file_shape, 'r') as fshape: shape = shapely.wkt.load(fshape) box = shape.bounds index_in = np.where((lon >= box[0]) & (lat >= box[1]) & (lon <= box[2]) & (lat <= box[3])) index_out = np.where((lon < box[0]) | (lat < box[1]) | (lon > box[2]) | (lat > box[3])) sst[index_out] = np.nan print(np.shape(index_in)) sys.exit(1) for i, j in zip(index_in[0], index_in[1]): p = Point(lon[i, j], lat[i, j]) if p.within(shape) is False: sst[i, j] = np.nan ''' if listbox is not None: mask_box = np.zeros(np.shape(sst)) for i in range(np.shape(listbox)[0]): index_in = np.where((lon >= listbox[i][0]) & (lat >= listbox[i][1]) & (lon <= listbox[i][2]) & (lat <= listbox[i][3])) mask_box[index_in] = 1 mask = ma.getmaskarray(sst) | ma.getmaskarray(bt11) | \ (quality_level.data < 4) | (mask_box == 0) else: mask = ma.getmaskarray(sst) | ma.getmaskarray(bt11) | \ (quality_level.data < 4) if mask.all(): print 'No data' sys.exit(0) # GCPs for resampling and geotiff georeference scansize = 16 dtime0 = datetime.utcnow() gcps = resample.get_gcps_from_bowtie(lon, lat, scansize, ngcps=ngcps) dtime = datetime.utcnow() - dtime0 print 'Get GCPs from bowtie swath : {}'.format(dtime) gcplon, gcplat, gcpnpixel, gcpnline = gcps rspysize = lon.shape[0] geod = pyproj.Geod(ellps='WGS84') mid = abs(gcpnline[:, 0] - 0.5).argmin() xdists = geod.inv(gcplon[mid, :-1], gcplat[mid, :-1], gcplon[mid, 1:], gcplat[mid, 1:])[2] xdist = np.sum(xdists) / abs(gcpnpixel[mid, -1] - gcpnpixel[mid, 0]) rspxsize = np.round(xdist / 750.).astype('int') + 1 gcpline = gcpnline * rspysize gcppixel = gcpnpixel * rspxsize # Resample with LinearNDInterpolator in output space dtime0 = datetime.utcnow() pix, lin = resample.get_points_from_gcps(gcplon, gcplat, gcppixel, gcpline, rspxsize, rspysize, 1, lon, lat, nprocs=nprocs) - 0.5 dtime = datetime.utcnow() - dtime0 print 'Get input coordinates in new grid : {}'.format(dtime) # Test input grid in output space # import matplotlib.pyplot as plt # for iscan in range(lon.shape[0] / scansize): # pixscan = pix[iscan * scansize: (iscan+1) * scansize, :] # linscan = lin[iscan * scansize: (iscan+1) * scansize, :] # # maskscan = mask[iscan * scansize: (iscan+1) * scansize, :] # # pixscan = pixscan[~maskscan] # # linscan = linscan[~maskscan] # plt.plot(pixscan.flatten(), linscan.flatten(), '+') # plt.show() # import pdb ; pdb.set_trace() # \Test input grid in output space dtime0 = datetime.utcnow() sst.data[mask] = np.nan bt11.data[mask] = np.nan val = np.dstack((sst.data, bt11.data)) rspval = resample.resample_bowtie_linear(pix, lin, val, scansize, rspxsize, rspysize, show=False) rspsst = rspval[:, :, 0] rspbt11 = rspval[:, :, 1] rspmask = ma.getmaskarray(rspsst) | ma.getmaskarray(rspbt11) dtime = datetime.utcnow() - dtime0 print 'Interpolate in new grid : {}'.format(dtime) # Denoise sst and open mask rspsst.mask = rspmask rspbt11.mask = rspmask finalsst = denoise_sst(rspsst, rspbt11, kernel=denoise_kernel, width=denoise_width, show=False) finalmask = ~binary_opening(~rspmask, structure=np.ones((3, 3)), iterations=open_iterations) finalsst.mask = finalmask # Contrast if vmin == None: if contrast == 'relative': vmin = np.percentile(finalsst.compressed(), 0.5) #elif contrast == 'agulhas': # dayofyear = float(start_time.timetuple().tm_yday) # vmin = 273.15 + 2. * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) + 20. - 9. # #par = [277.94999694824219, 42, 2.5500030517578125, -219] # par = [278.09999084472656, 0.62831853071795862, # 2.4000091552734375, 0.1570796326794896] # vmin = par[0] + par[2] * np.cos(par[3] * dayofyear - par[1]) #if a specific txt file is provided for the range elif dic is not None: dayofyear = float(start_time.timetuple().tm_yday) extrema = dic.get(dayofyear, dic[min(dic.keys(), key=lambda k:abs(k - dayofyear))]) vmin = extrema[0] else: raise Exception('Unknown contrast : {}'.format(contrast)) if vmax == None: if contrast == 'relative': vmax = np.percentile(finalsst.compressed(), 99.5) #elif contrast == 'agulhas': # dayofyear = float(start_time.timetuple().tm_yday) # vmax = 273.15 + 2. * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) + 20. + 4. # #par = [300.59999084472656, 21, 2.8499908447265625, -191] # par = [300.59999084472656, 0.29919930034188508, # 2.8499908447265625, 0.14959965017094254] # vmax = par[0] + par[2] * np.cos(par[3] * dayofyear - par[1]) #if a specific text file is provided for the range elif dic is not None: dayofyear = float(start_time.timetuple().tm_yday) extrema = dic.get(dayofyear, dic[min(dic.keys(), key=lambda k:abs(k - dayofyear))]) vmax = extrema[1] else: raise Exception('Unknown contrast : {}'.format(contrast)) # Flip (geotiff in "swath sense") finalsst = finalsst[::-1, ::-1] gcppixel = rspxsize - gcppixel gcpline = rspysize - gcpline # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = 'SST_VIIRS_denoised' if contrast == 'relative': metadata['name'] = os.path.splitext(os.path.basename(infile))[0] else: metadata['name'] = '{}_{}'.format(os.path.splitext(os.path.basename(infile))[0], contrast) metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = 'NOAA' metadata['processing_center'] = 'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'sea surface temperature' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'radiometer' metadata['sensor_name'] = 'VIIRS' metadata['sensor_platform'] = 'Suomi-NPP' #metadata['sensor_pass'] = geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() gcpheight = np.zeros(gcppixel.shape) geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcpheight, gcppixel, gcpline) band = [] indndv = np.where(ma.getmaskarray(finalsst) == True) offset, scale = vmin, (vmax-vmin)/254. np.clip(finalsst.data, vmin, vmax, out=finalsst.data) array = np.round((finalsst.data - offset) / scale).astype('uint8') array[indndv] = 255 colortable = stfmt.format_colortable('cerbere_medspiration', vmax=vmax, vmax_pal=vmax, vmin=vmin, vmin_pal=vmin) band.append({'array':array, 'scale':scale, 'offset':offset, 'description':'sea surface temperature', 'unittype':'K', 'nodatavalue':255, 'parameter_range':[vmin, vmax], 'colortable':colortable}) if write_netcdf == False: # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile) elif write_netcdf == True: print 'Write netcdf' ncfile = stfmt.format_ncfilename(outdir, metadata, create_dir=True) band[0]['name'] = 'denoised_sst' band[0]['long_name'] = 'denoised sea surface temperature' band[0]['standard_name'] = 'sea_surface_temperature' # ymid = abs(gcpline[:, 0] - rspysize / 2.).argmin() # xdists = geod.inv(gcplon[ymid, :-1], gcplat[ymid, :-1], # gcplon[ymid, 1:], gcplat[ymid, 1:])[2] / \ # np.abs(gcppixel[ymid, 1:] - gcppixel[ymid, :-1]) # xmid = abs(gcppixel[0, :] - rspxsize / 2.).argmin() # ydists = geod.inv(gcplon[:-1, xmid], gcplat[:-1, xmid], # gcplon[1:, xmid], gcplat[1:, xmid])[2] / \ # np.abs(gcpline[1:, xmid] - gcpline[:-1, xmid]) # print xdists.min(), xdists.max(), xdists.mean() # # e.g. 749.905437495 749.905892002 749.905827652 # print ydists.min(), ydists.max(), ydists.mean() # # e.g. 737.638084996 741.195663083 739.157662785 metadata['spatial_resolution'] = 750. stfmt.write_netcdf(ncfile, metadata, geolocation, band, 'swath', ngcps=gcplon.shape)
def modis_sst(infileid, outdir, download_dir='/tmp', vmin=None, vmax=None, contrast='relative', ngcps=(21, 25), resample_radius=5000., resample_sigma=2500., denoise_kernel='boxcar', denoise_width=20, open_iterations=1, nprocs=1, pngkml=False, write_netcdf=False, file_range=None): """ """ dic = None # Check file containing ranges if file_range is not None: if not os.path.isfile(file_range): raise Exception('file_range {} not found'.format(file_range)) # Read a txt file which contains three columns: yearday,vmin,vmax with open(file_range, 'r') as f: dic = {} for line in f: (fdoy, fmin, fmax) = line.split(',') dic[int(fdoy)] = (float(fmin), float(fmax)) # modissstfname = '/mnt/data/sst/modis/MYD021KM.A2011338.1225/A2011338122500.L2_LAC_SST' # modis02fname = '/mnt/data/sst/modis/MYD021KM.A2011338.1225/MYD021KM.A2011338.1225.005.2011339235825.hdf' # modis03fname = '/mnt/data/sst/modis/MYD021KM.A2011338.1225/MYD03.A2011338.1225.005.2011339233301.hdf' # modis35l2fname = '/mnt/data/sst/modis/MYD021KM.A2011338.1225/MYD35_L2.A2011338.1225.005.2011340001234.hdf' if contrast == 'med': listbox = [[-6., 35., 2.75, 42.48], [2.74, 30, 42.2, 47.00]] elif contrast == 'cwe': listbox = [[-23., 35.2, -5.5, 42.88], [-23., 42.8, 2.20, 51.]] elif contrast == 'nwe': listbox = [[-23., 50.8, 32.7, 68.]] elif contrast == 'gom': listbox = [[-98., 18.0, -80.5, 30.5]] elif contrast == 'agulhas': listbox = [[10.8437, -45.7404, 39.9799, -25.3019]] elif contrast == 'gs': listbox = [[-81.52, 20, -30, 45]] else: listbox = None # Search/Download data print 'Search/Download data' if re.match(r'^[AT][0-9]{13}$', infileid) is None: raise Exception('Input for modis_sst is an ID ' '(e.g. A2011338122500 or T2014143234500)') platform = infileid[0] date = datetime.strptime(infileid[1:], '%Y%j%H%M%S') modissstid = {'A': 'MODISAL2SST', 'T': 'MODISTL2SST'}[platform] modissstfname = modis.search_and_download(modissstid, date, download_dir) modis02id = {'A': 'MYD021KM', 'T': 'MOD021KM'}[platform] modis02fname = modis.search_and_download(modis02id, date, download_dir) modis03id = {'A': 'MYD03', 'T': 'MOD03'}[platform] modis03fname = modis.search_and_download(modis03id, date, download_dir) modis35l2id = {'A': 'MYD35_L2', 'T': 'MOD35_L2'}[platform] modis35l2fname = modis.search_and_download(modis35l2id, date, download_dir) # Read/Process data print 'Read/Process data' # Read from SST file modissstfile = modis.MODISL2File(modissstfname) # lon = modissstfile.read_lon() # lat = modissstfile.read_lat() sst = modissstfile.read_sst() + 273.15 attrs = modissstfile.read_attributes() modissstfile.close() # Read from radiances file modis02file = modis.MODIS02File(modis02fname) rad11 = modis02file.read_radiance(31) modis02file.close() bt11 = modis.modis_bright(rad11, 31, 1) # Read from geolocation file modis03file = modis.MODIS03File(modis03fname) lon = modis03file.read_lon() lat = modis03file.read_lat() modis03file.close() # Read from cloud mask file modis35l2file = modis.MODIS35L2File(modis35l2fname) cloudmask = modis35l2file.read_cloudmask(byte=0) modis35l2file.close() cloudy = (np.bitwise_and(cloudmask, 2) == 0) & \ (np.bitwise_and(cloudmask, 4) == 0) land = np.bitwise_and(cloudmask, 128) == 128 # Desert or Land # land = (np.bitwise_and(cloudmask, 128) == 128) | \ # (np.bitwise_and(cloudmask, 64) == 64) # Desert or Land or Coastal if listbox is not None: mask_box = np.zeros(np.shape(sst)) for i in range(np.shape(listbox)[0]): index_in = np.where((lon >= listbox[i][0]) & (lat >= listbox[i][1]) & (lon <= listbox[i][2]) & (lat <= listbox[i][3])) mask_box[index_in] = 1 mask = cloudy | land | ma.getmaskarray(sst) | ma.getmaskarray(bt11) | ( mask_box == 0) else: mask = cloudy | land | ma.getmaskarray(sst) | ma.getmaskarray(bt11) if mask.all(): print 'No data' sys.exit(0) # GCPs for resampling and geotiff georeference scansize = 10 dtime0 = datetime.utcnow() gcps = resample.get_gcps_from_bowtie(lon, lat, scansize, ngcps=ngcps) #gcps = resample.get_gcps_from_bowtie_old(lon, lat, scansize, ngcps=ngcps) dtime = datetime.utcnow() - dtime0 print 'Get GCPs from bowtie swath : {}'.format(dtime) gcplon, gcplat, gcpnpixel, gcpnline = gcps rspysize = lon.shape[0] geod = pyproj.Geod(ellps='WGS84') mid = abs(gcpnline[:, 0] - 0.5).argmin() xdists = geod.inv(gcplon[mid, :-1], gcplat[mid, :-1], gcplon[mid, 1:], gcplat[mid, 1:])[2] xdist = np.sum(xdists) / abs(gcpnpixel[mid, -1] - gcpnpixel[mid, 0]) rspxsize = np.round(xdist / 1000.).astype('int') + 1 gcpline = gcpnline * rspysize gcppixel = gcpnpixel * rspxsize # Resample with LinearNDInterpolator in output space dtime0 = datetime.utcnow() pix, lin = resample.get_points_from_gcps(gcplon, gcplat, gcppixel, gcpline, rspxsize, rspysize, 1, lon, lat, nprocs=nprocs) - 0.5 dtime = datetime.utcnow() - dtime0 print 'Get input coordinates in new grid : {}'.format(dtime) # Test input grid in output space # import matplotlib.pyplot as plt # for iscan in range(lon.shape[0] / scansize): # pixscan = pix[iscan * scansize: (iscan+1) * scansize, :] # linscan = lin[iscan * scansize: (iscan+1) * scansize, :] # # maskscan = mask[iscan * scansize: (iscan+1) * scansize, :] # # pixscan = pixscan[~maskscan] # # linscan = linscan[~maskscan] # plt.plot(pixscan.flatten(), linscan.flatten(), '+') # plt.show() # import pdb ; pdb.set_trace() # \Test input grid in output space dtime0 = datetime.utcnow() sst.data[mask] = np.nan bt11.data[mask] = np.nan val = np.dstack((sst.data, bt11.data)) rspval = resample.resample_bowtie_linear(pix, lin, val, scansize, rspxsize, rspysize, show=False) rspsst = rspval[:, :, 0] rspbt11 = rspval[:, :, 1] rspmask = ma.getmaskarray(rspsst) | ma.getmaskarray(rspbt11) dtime = datetime.utcnow() - dtime0 print 'Interpolate in new grid : {}'.format(dtime) # Resample with pyresample in lon/lat space # rsplin, rsppix = np.mgrid[0:rspysize, 0:rspxsize] + 0.5 # rsplon, rsplat = resample.get_points_from_gcps(gcplon, gcplat, gcppixel, # gcpline, rspxsize, rspysize, # 0, rsppix, rsplin, nprocs=nprocs) # # Test resample grid # import matplotlib.pyplot as plt # plt.plot(lon.flatten(), lat.flatten(), '+b') # plt.plot(rsplon.flatten(), rsplat.flatten(), '+g') # plt.plot(gcplon.flatten(), gcplat.flatten(), 'xr') # plt.show() # import pdb ; pdb.set_trace() # # \Test resample grid # # Test radius / sigma # resample_radius = 5000. # resample_sigma = 2500. # sst.mask = False # #sst.mask = sst.mask | (sst.data < 273.15+5) | (sst.data > 273.15+30) # rspsst = resample.resample_gauss(lon, lat, sst, rsplon, rsplat, # resample_radius, resample_sigma, # nprocs=nprocs, show=True) # import pdb ; pdb.set_trace() # # \Test radius / sigma # valid = np.where(mask == False) # rspsst = resample.resample_gauss(lon[valid], lat[valid], sst[valid], # rsplon, rsplat, # resample_radius, resample_sigma, # fill_value=None, nprocs=nprocs, # show=False) # rspbt11 = resample.resample_gauss(lon[valid], lat[valid], bt11[valid], # rsplon, rsplat, # resample_radius, resample_sigma, # fill_value=None, nprocs=nprocs, # show=False) # rspmask = resample.resample_nearest(lon, lat, mask, # rsplon, rsplat, # resample_radius, # fill_value=True, nprocs=nprocs, # show=False) # rspmask = rspmask | ma.getmaskarray(rspsst) | ma.getmaskarray(rspbt11) # Denoise sst and open mask rspsst.mask = rspmask rspbt11.mask = rspmask finalsst = denoise_sst(rspsst, rspbt11, kernel=denoise_kernel, width=denoise_width, show=False) #finalsst = rspsst finalmask = ~binary_opening( ~rspmask, structure=np.ones((3, 3)), iterations=open_iterations) #finalmask = rspmask finalsst.mask = finalmask # Contrast if vmin == None: if contrast == 'relative': vmin = np.percentile(finalsst.compressed(), 0.5) #elif contrast == 'agulhas': # dayofyear = float(attrs['start_time'].timetuple().tm_yday) # vmin = 273.15 + 2. * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) + 20. - 9. # #par = [277.94999694824219, 42, 2.5500030517578125, -219] # par = [278.09999084472656, 0.62831853071795862, # 2.4000091552734375, 0.1570796326794896] # vmin = par[0] + par[2] * np.cos(par[3] * dayofyear - par[1]) #if a specific txt file is provided for the range elif dic is not None: dayofyear = float(attrs['start_time'].timetuple().tm_yday) # Read a txt file which contains three columns: yearday,vmin,vmax extrema = dic.get( dayofyear, dic[min(dic.keys(), key=lambda k: abs(k - dayofyear))]) vmin = extrema[0] else: raise Exception('Unknown contrast : {}'.format(contrast)) if vmax == None: if contrast == 'relative': vmax = np.percentile(finalsst.compressed(), 99.5) #elif contrast == 'agulhas': # dayofyear = float(attrs['start_time'].timetuple().tm_yday) # vmax = 273.15 + 2. * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) + 20. + 4. # #par = [300.59999084472656, 21, 2.8499908447265625, -191] # par = [300.59999084472656, 0.29919930034188508, # 2.8499908447265625, 0.14959965017094254] # vmax = par[0] + par[2] * np.cos(par[3] * dayofyear - par[1]) #if a specific text file is provided for the range elif dic is not None: dayofyear = float(attrs['start_time'].timetuple().tm_yday) extrema = dic.get( dayofyear, dic[min(dic.keys(), key=lambda k: abs(k - dayofyear))]) vmax = extrema[1] else: raise Exception('Unknown contrast : {}'.format(contrast)) # Flip (geotiff in "swath sense") finalsst = finalsst[::-1, ::-1] gcppixel = rspxsize - gcppixel gcpline = rspysize - gcpline # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(attrs['start_time'], attrs['stop_time'], units='ms') metadata['product_name'] = 'SST_MODIS_denoised' if contrast == 'relative': metadata['name'] = os.path.splitext(os.path.basename(modissstfname))[0] else: metadata['name'] = '{}_{}'.format( os.path.splitext(os.path.basename(modissstfname))[0], contrast) metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = [ modissstfname, modis02fname, modis03fname, modis35l2fname ] metadata['source_provider'] = 'NASA' metadata['processing_center'] = 'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'sea surface temperature' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'radiometer' metadata['sensor_name'] = 'MODIS' metadata['sensor_platform'] = attrs['platform'] metadata['sensor_pass'] = attrs['pass'] geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() gcpheight = np.zeros(gcppixel.shape) geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcpheight, gcppixel, gcpline) band = [] indndv = np.where(ma.getmaskarray(finalsst) == True) offset, scale = vmin, (vmax - vmin) / 254. np.clip(finalsst.data, vmin, vmax, out=finalsst.data) array = np.round((finalsst.data - offset) / scale).astype('uint8') array[indndv] = 255 colortable = stfmt.format_colortable('cerbere_medspiration', vmax=vmax, vmax_pal=vmax, vmin=vmin, vmin_pal=vmin) band.append({ 'array': array, 'scale': scale, 'offset': offset, 'description': 'sea surface temperature', 'unittype': 'K', 'nodatavalue': 255, 'parameter_range': [vmin, vmax], 'colortable': colortable }) # Write geotiff if write_netcdf == False: print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile) elif write_netcdf == True: print 'Write netcdf' ncfile = stfmt.format_ncfilename(outdir, metadata, create_dir=True) band[0]['name'] = 'denoised_sst' band[0]['long_name'] = 'denoised sea surface temperature' band[0]['standard_name'] = 'sea_surface_temperature' # ymid = abs(gcpline[:, 0] - rspysize / 2.).argmin() # xdists = geod.inv(gcplon[ymid, :-1], gcplat[ymid, :-1], # gcplon[ymid, 1:], gcplat[ymid, 1:])[2] / \ # np.abs(gcppixel[ymid, 1:] - gcppixel[ymid, :-1]) # xmid = abs(gcppixel[0, :] - rspxsize / 2.).argmin() # ydists = geod.inv(gcplon[:-1, xmid], gcplat[:-1, xmid], # gcplon[1:, xmid], gcplat[1:, xmid])[2] / \ # np.abs(gcpline[1:, xmid] - gcpline[:-1, xmid]) # print xdists.min(), xdists.max(), xdists.mean() # # e.g. 999.763079208 999.763084628 999.763082543 # print ydists.min(), ydists.max(), ydists.mean() # # e.g. 1006.4149472 1008.60679776 1007.5888004 metadata['spatial_resolution'] = 1000. stfmt.write_netcdf(ncfile, metadata, geolocation, band, 'swath', ngcps=gcplon.shape)
def sar_wind(infile, outdir, pngkml=False, valid_percent_min=1., vmin=0., vmax=25.4, vmin_pal=0., vmax_pal=50 * 0.514): """ """ # Read/Process data print 'Read/Process data' sarwind = SAFEOCNNCFile(infile, product='WIND') mission = sarwind.read_global_attribute('missionName') if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' elif mission == 'S1B': sensor_name = 'Sentinel-1B' sensor_platform = 'Sentinel-1B' source_provider = 'ESA' else: raise Exception('S1A/S1B missions expected.') start_time = sarwind.get_start_time() stop_time = sarwind.get_end_time() heading = sarwind.read_values('owiHeading') if np.sin((90 - heading[0, 0]) * np.pi / 180) > 0: sensor_pass = '******' else: sensor_pass = '******' safe_name = os.path.basename(os.path.dirname(os.path.dirname(infile))) sensor_mode = safe_name.split('_')[1] if sensor_mode not in ['S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'IW', 'EW']: raise Exception('S[1-6]/IW/EW modes expected.') sensor_swath = os.path.basename(infile).split('-')[1].upper() sensor_polarisation = sarwind.read_global_attribute('polarisation') datagroup = safe_name.replace('.SAFE', '') pid = datagroup.split('_')[-1] dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid windspeed = sarwind.read_values('owiWindSpeed') if windspeed.shape == (1, 1): raise Exception('owiRaSize and owiAzSize equals 1 !') winddirection = sarwind.read_values('owiWindDirection') landflag = sarwind.read_values('owiLandFlag') inversionquality = sarwind.read_values('owiInversionQuality') windquality = sarwind.read_values('owiWindQuality') #pbright = sarwind.read_values('owiPBright') lon = sarwind.read_values('lon') lat = sarwind.read_values('lat') if np.ma.is_masked(lon) or np.ma.is_masked(lat): raise Exception('Some lon and/or lat is masked.') if np.all(lon == 0) or np.all(lat == 0): raise Exception('All lon and/or lat set to 0.') ngcps = np.ceil(np.array(lon.shape) / 10.).astype('int') + 1 pix = np.linspace(0, lon.shape[1] - 1, num=ngcps[1]).round().astype('int32') lin = np.linspace(0, lon.shape[0] - 1, num=ngcps[0]).round().astype('int32') pix2d, lin2d = np.meshgrid(pix, lin) gcplon = lon[lin2d, pix2d] gcplat = lat[lin2d, pix2d] gcppix = pix2d + 0.5 gcplin = lin2d + 0.5 gcphei = np.zeros(ngcps) ## Make sure lon are continuous (no jump because of IDL crossing) ## (if IDL crossing, by convention we make lon to be around 180deg) # if gcplon.min() < -135 and gcplon.max() > 135: # gcplon[np.where(gcplon < 0)] += 360. gcplonmid = gcplon[ngcps[0] / 2, ngcps[1] / 2] gcplon = np.mod(gcplon - (gcplonmid - 180.), 360.) + gcplonmid - 180. gcplonmin = gcplon.min() gcplon = gcplon - np.floor((gcplonmin + 180.) / 360.) * 360. # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = 'SAR_wind' metadata['name'] = dataname metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = '' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = ['wind speed', 'wind direction'] metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] #mask = landflag != 0 mask = (landflag != 0) | \ ((windspeed == 0) & (winddirection == 180)) | \ ((windspeed == 0) & (windquality == 3)) | \ ((windspeed == 0) & (inversionquality == 2)) mask = np.ma.getdata(mask) # we don't want to sum on a masked mask valid_percent = np.sum(~mask) / float(mask.size) * 100 if valid_percent <= valid_percent_min: raise Exception( 'Not enough valid data: {:0.3f}%'.format(valid_percent)) # if np.all(mask): # raise Exception('Data is fully masked !') offset, scale = vmin, (vmax - vmin) / 254. np.clip(windspeed, vmin, vmax, out=windspeed) array = np.round((windspeed - offset) / scale).astype('uint8') array[mask] = 255 colortable = stfmt.format_colortable('noaa_wind', vmax=vmax, vmax_pal=vmax_pal, vmin=vmin, vmin_pal=vmin_pal) band.append({ 'array': array, 'scale': scale, 'offset': offset, 'description': 'wind speed', 'unittype': 'm/s', 'nodatavalue': 255, 'parameter_range': [vmin, vmax], 'colortable': colortable }) winddirection = np.mod(90. - winddirection + 180., 360.) array = np.round(winddirection / 360. * 254.).astype('uint8') array[mask] = 255 band.append({ 'array': array, 'scale': 360. / 254., 'offset': 0., 'description': 'wind direction', 'unittype': 'deg', 'nodatavalue': 255, 'parameter_range': [0, 360.] }) # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile)
def viirs_chlora(infileid, outdir, download_dir='/tmp', vmin=None, vmax=None, contrast='relative', ngcps=(26, 32), open_iterations=1, nprocs=1, pngkml=False, write_netcdf=False): """ """ if contrast == 'med': listbox = [[-6., 35., 2.75, 42.48], [2.74, 30, 42.2, 47.00]] elif contrast == 'cwe': listbox = [[-23., 35.2, -5.5, 42.88], [-23., 42.8, 2.20, 51.]] elif contrast == 'nwe': listbox = [[-23., 50.8, 32.7, 68.]] elif contrast == 'gom': listbox = [[-98., 18.0, -80.5, 30.5]] elif contrast == 'agulhas': listbox = [[10.8437, -45.7404, 39.9799, -25.3019]] elif contrast == 'gs': listbox = [[-81.52, 20, -30, 45]] else: listbox = None # Search/Download data print 'Search/Download data' if re.match(r'^V[0-9]{13}$', infileid) is None: raise Exception('Input for viirs_chlora is an ID ' '(e.g. V2014093110000)') product_id = 'VIIRSL2OC' date = datetime.strptime(infileid[1:], '%Y%j%H%M%S') viirsocfname = viirs.search_and_download(product_id, date, download_dir) # Read/Process data print 'Read/Process data' # Read from OC file viirsocfile = viirs.VIIRSL2File(viirsocfname) lon = viirsocfile.read_lon() lat = viirsocfile.read_lat() chlora = viirsocfile.read_chlora() attrs = viirsocfile.read_attributes() viirsocfile.close() if listbox is not None: mask_box = np.zeros(np.shape(chlora.data)) for i in range(np.shape(listbox)[0]): index_in = np.where((lon >= listbox[i][0]) & (lat >= listbox[i][1]) & (lon <= listbox[i][2]) & (lat <= listbox[i][3])) mask_box[index_in] = 1 mask = (mask_box == 0) | ma.getmaskarray(chlora) else: mask = ma.getmaskarray(chlora) if mask.all(): print 'No data' sys.exit(0) # GCPs for resampling and geotiff georeference scansize = 16 dtime0 = datetime.utcnow() gcps = resample.get_gcps_from_bowtie(lon, lat, scansize, ngcps=ngcps) dtime = datetime.utcnow() - dtime0 print 'Get GCPs from bowtie swath : {}'.format(dtime) gcplon, gcplat, gcpnpixel, gcpnline = gcps rspysize = lon.shape[0] geod = pyproj.Geod(ellps='WGS84') mid = abs(gcpnline[:, 0] - 0.5).argmin() xdists = geod.inv(gcplon[mid, :-1], gcplat[mid, :-1], gcplon[mid, 1:], gcplat[mid, 1:])[2] xdist = np.sum(xdists) / abs(gcpnpixel[mid, -1] - gcpnpixel[mid, 0]) rspxsize = np.round(xdist / 750.).astype('int') + 1 gcpline = gcpnline * rspysize gcppixel = gcpnpixel * rspxsize # Resample with LinearNDInterpolator in output space dtime0 = datetime.utcnow() pix, lin = resample.get_points_from_gcps(gcplon, gcplat, gcppixel, gcpline, rspxsize, rspysize, 1, lon, lat, nprocs=nprocs) - 0.5 dtime = datetime.utcnow() - dtime0 print 'Get input coordinates in new grid : {}'.format(dtime) # Test input grid in output space # import matplotlib.pyplot as plt # for iscan in range(lon.shape[0] / scansize): # pixscan = pix[iscan * scansize: (iscan+1) * scansize, :] # linscan = lin[iscan * scansize: (iscan+1) * scansize, :] # # maskscan = mask[iscan * scansize: (iscan+1) * scansize, :] # # pixscan = pixscan[~maskscan] # # linscan = linscan[~maskscan] # plt.plot(pixscan.flatten(), linscan.flatten(), '+') # plt.show() # import pdb ; pdb.set_trace() # \Test input grid in output space dtime0 = datetime.utcnow() chlora.data[mask] = np.nan rspchlora = resample.resample_bowtie_linear(pix, lin, chlora.data, scansize, rspxsize, rspysize, show=False) rspmask = ma.getmaskarray(rspchlora) dtime = datetime.utcnow() - dtime0 print 'Interpolate in new grid : {}'.format(dtime) # Take log and open mask finalchlora = ma.log(rspchlora) finalmask = ~binary_opening( ~rspmask, structure=np.ones((3, 3)), iterations=open_iterations) finalchlora.mask = finalmask # Contrast if vmin == None: if contrast == 'relative': vmin = np.percentile(finalchlora.compressed(), 0.5) elif contrast == 'agulhas': dayofyear = float(attrs['start_time'].timetuple().tm_yday) vmin = -0.5 * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) - 3. elif contrast == 'med' or contrast == 'nwe' or contrast == 'cwe': vmin = np.percentile(finalchlora.compressed(), 2) else: raise Exception('Unknown contrast : {}'.format(contrast)) else: if vmin != 0: vmin = math.log(vmin) else: vmin = np.percentile(finalchlora.compressed(), 0.5) if vmax == None: if contrast == 'relative': vmax = np.percentile(finalchlora.compressed(), 99.5) elif contrast == 'agulhas': dayofyear = float(attrs['start_time'].timetuple().tm_yday) vmax = 0.5 * np.cos((dayofyear - 45.) * 2. * np.pi / 365.) + 3. elif contrast == 'med': vmax = np.percentile(finalchlora.compressed(), 98) elif contrast == 'nwe': vmax = np.percentile(finalchlora.compressed(), 98) elif contrast == 'cwe': vmax = np.percentile(finalchlora.compressed(), 98) else: raise Exception('Unknown contrast : {}'.format(contrast)) else: if vmax != 0: vmax = math.log(vmax) else: vmax = np.percentile(finalchlora.compressed(), 98) # Flip (geotiff in "swath sense") finalchlora = finalchlora[::-1, ::-1] gcppixel = rspxsize - gcppixel gcpline = rspysize - gcpline # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(attrs['start_time'], attrs['stop_time'], units='ms') metadata['product_name'] = 'Chlorophyll_a_concentration_VIIRS' if contrast == 'relative': metadata['name'] = os.path.splitext(os.path.basename(viirsocfname))[0] else: metadata['name'] = '{}_{}'.format( os.path.splitext(os.path.basename(viirsocfname))[0], contrast) metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = viirsocfname metadata['source_provider'] = 'NOAA' metadata['processing_center'] = 'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'chlorophyll a concentration' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'radiometer' metadata['sensor_name'] = 'VIIRS' metadata['sensor_platform'] = 'Suomi-NPP' metadata['sensor_pass'] = attrs['pass'] geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() gcpheight = np.zeros(gcppixel.shape) geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcpheight, gcppixel, gcpline) band = [] indndv = np.where(ma.getmaskarray(finalchlora) == True) offset, scale = vmin, (vmax - vmin) / 254. np.clip(finalchlora.data, vmin, vmax, out=finalchlora.data) array = np.round((finalchlora.data - offset) / scale).astype('uint8') array[indndv] = 255 colortable = stfmt.format_colortable('chla_jet', vmax=vmax, vmax_pal=vmax, vmin=vmin, vmin_pal=vmin) band.append({ 'array': array, 'scale': scale, 'offset': offset, 'description': 'chlorophyll a concentration', 'unittype': 'log(mg/m3)', 'nodatavalue': 255, 'parameter_range': [vmin, vmax], 'colortable': colortable }) if write_netcdf == False: # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile) elif write_netcdf == True: print 'Write netcdf' ncfile = stfmt.format_ncfilename(outdir, metadata, create_dir=True) band[0]['name'] = 'chlor_a' band[0]['long_name'] = 'Chlorophyll Concentration, OCI Algorithm' band[0][ 'standard_name'] = 'mass_concentration_chlorophyll_concentration_in_sea_water' band[0]['unittype'] = 'mg m^-3 (log)' # ymid = abs(gcpline[:, 0] - rspysize / 2.).argmin() # xdists = geod.inv(gcplon[ymid, :-1], gcplat[ymid, :-1], # gcplon[ymid, 1:], gcplat[ymid, 1:])[2] / \ # np.abs(gcppixel[ymid, 1:] - gcppixel[ymid, :-1]) # xmid = abs(gcppixel[0, :] - rspxsize / 2.).argmin() # ydists = geod.inv(gcplon[:-1, xmid], gcplat[:-1, xmid], # gcplon[1:, xmid], gcplat[1:, xmid])[2] / \ # np.abs(gcpline[1:, xmid] - gcpline[:-1, xmid]) # print xdists.min(), xdists.max(), xdists.mean() # # e.g. 749.810419844 749.810438261 749.810429577 # print ydists.min(), ydists.max(), ydists.mean() # # e.g. 737.874499629 739.856423757 738.87317625 metadata['spatial_resolution'] = 750. stfmt.write_netcdf(ncfile, metadata, geolocation, band, 'swath', ngcps=gcplon.shape)
def sar_doppler_exp(infile, outdir, pngkml=False, vmin=-2.5, vmax=2.5, vmin_pal=-2.5, vmax_pal=2.5): """ """ # Read/Process data print 'Read/Process data' sardop = Dataset(infile) mission = sardop.MISSIONNAME if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' else: raise Exception('S1A mission expected.') doptime = sardop.variables['rvlZeroDopplerTime'][:] start_time = datetime.strptime(''.join(list(doptime[0, 0, :])), '%Y-%m-%dT%H:%M:%S.%f') stop_time = datetime.strptime(''.join(list(doptime[-1, -1, :])), '%Y-%m-%dT%H:%M:%S.%f') heading = sardop.variables['rvlHeading'][:] if np.sin((90 - heading.mean()) * np.pi / 180) > 0: sensor_pass = '******' else: sensor_pass = '******' # safe_name = os.path.basename(os.path.dirname(os.path.dirname(infile))) # sensor_mode = safe_name.split('_')[1] # if sensor_mode not in ['S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'IW', 'EW']: # raise Exception('S[1-6]/IW/EW modes expected.') # sensor_swath = os.path.basename(infile).split('-')[1].upper() # sensor_polarisation = sardop.read_global_attribute('polarisation') # datagroup = safe_name.replace('.SAFE', '') # pid = datagroup.split('_')[-1] # dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid dataname = os.path.splitext(os.path.basename(infile))[0] sensor_mode = dataname.split('_')[1] sensor_swath = sensor_mode sensor_polarisation = sardop.POLARISATION radvel = sardop.variables['rvlRadVel'][:] sweepangle = sardop.variables['rvlSweepAngle'][:] radvel = descalloping(radvel, sweepangle) radvel = smooth(radvel) inc = sardop.variables['rvlIncidenceAngle'][:] radvel /= np.sin(np.deg2rad(inc)) #landflag = sardop.variables['rvlLandFlag'][:] lon = sardop.variables['rvlLon'][:] lat = sardop.variables['rvlLat'][:] if sensor_pass == 'Ascending': radvel *= -1 ngcps = np.ceil(np.array(lon.shape) / 10.) + 1 pix = np.linspace(0, lon.shape[1] - 1, num=ngcps[1]).round().astype('int32') lin = np.linspace(0, lon.shape[0] - 1, num=ngcps[0]).round().astype('int32') pix2d, lin2d = np.meshgrid(pix, lin) gcplon = lon[lin2d, pix2d] gcplat = lat[lin2d, pix2d] gcppix = pix2d + 0.5 gcplin = lin2d + 0.5 gcphei = np.zeros(ngcps) if gcplon.min() < -135 and gcplon.max() > 135: gcplon[np.where(gcplon < 0)] += 360. # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = 'SAR_doppler_exp' metadata['name'] = dataname metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = '' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'radial horizontal velocities' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass # metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] #indndv = np.where(landflag != 0) offset, scale = vmin, (vmax - vmin) / 254. np.clip(radvel, vmin, vmax, out=radvel) array = np.round((radvel - offset) / scale).astype('uint8') #array[indndv] = 255 colortable = stfmt.format_colortable('doppler', vmax=vmax, vmax_pal=vmax_pal, vmin=vmin, vmin_pal=vmin_pal) band.append({ 'array': array, 'scale': scale, 'offset': offset, 'description': 'radial horizontal velocities', 'unittype': 'm/s', 'nodatavalue': 255, 'parameter_range': [vmin, vmax], 'colortable': colortable }) # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile)
def sar_roughness(infile, outdir, pngkml=False, contrast=None, vmin=None, vmax=None, landmaskpath=None, write_netcdf=False, gcp2height=0): """ """ # Read/Process data print 'Read/Process data' sarmp = SAFEGeoTiffFile(infile) sarim = SARImage(sarmp) mission = sarim.get_info('mission') if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' elif mission == 'S1B': sensor_name = 'Sentinel-1B' sensor_platform = 'Sentinel-1B' source_provider = 'ESA' else: raise Exception('Unknown mission') timefmt = '%Y-%m-%dT%H:%M:%S.%f' start_time = datetime.strptime(sarim.get_info('start_time'), timefmt) stop_time = datetime.strptime(sarim.get_info('stop_time'), timefmt) sensor_pass = sarim.get_info('pass') sensor_mode = sarim.get_info('mode') sensor_swath = sarim.get_info('swath') sensor_polarisation = sarim.get_info('polarisation') product = sarim.get_info('product') if product == 'GRD': spacing = [2, 2] elif product == 'SLC': if sensor_mode == 'WV': mspacing = (15, 15) elif re.match(r'^S[1-6]$', sensor_mode) != None: mspacing = (15, 15) elif sensor_mode == 'IW': raise Exception('sar_roughness for IW SLC ?') elif sensor_mode == 'EW': raise Exception('sar_roughness for EW SLC ?') else: raise Exception('Unkown S1 mode : {}'.format(sensor_mode)) spacing = np.round(sarim.meters2pixels(mspacing)) else: raise Exception('Unkown S1 product : {}'.format(product)) mspacing = sarim.pixels2meters(spacing) datagroup = sarim.get_info('safe_name').replace('.SAFE', '') pid = datagroup.split('_')[-1] dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid ssr = np.sqrt(sarim.get_data('roughness', spacing=spacing)) ########## TMP calibration constant ########## # if sensor_mode == 'WV': # caldir = '/home/cercache/project/mpc-sentinel1/analysis/s1_data_analysis/L1/WV/S1A_WV_SLC__1S/cal_cste' # if sensor_polarisation == 'HH': # if sensor_swath == 'WV1': # caltmp = (55.80+56.91)/2. # calname = 'cal_cste_hh_wv1.pkl' # elif sensor_swath == 'WV2': # caltmp = (40.65+40.32)/2. # calname = 'cal_cste_hh_wv2.pkl' # elif sensor_polarisation == 'VV': # if sensor_swath == 'WV1': # caltmp = 58.24 # calname = 'cal_cste_vv_wv1.pkl' # elif sensor_swath == 'WV2': # caltmp = 49.02 # calname = 'cal_cste_vv_wv2.pkl' # calpath = os.path.join(caldir, calname) # if os.path.exists(calpath) == True: # caltmp = get_caltmp(calpath, start_time) # elif re.match(r'^S[1-6]$', sensor_mode) != None: # if start_time < datetime(2014, 7, 16, 0, 0, 0): # if sensor_mode == 'S6': # raise Exception('S6 calibration missing') # sm2cal = {'S1':58., 'S2':56., 'S3':52., 'S4':52., 'S5':49.} # else: # # from commissioning phase report # sm2cal = {'S1':3., 'S2':5., 'S3':-1.5, 'S4':4., 'S5':1., 'S6':4.75} # caltmp = sm2cal[sensor_mode] # elif sensor_mode == 'IW': # if start_time < datetime(2014, 7, 16, 0, 0, 0): # caltmp = 109. # else: # caltmp = 3. # from commissioning phase report # elif sensor_mode == 'EW': # if start_time < datetime(2014, 7, 16, 0, 0, 0): # caltmp = 94. # else: # caltmp = -1. # <- -2. # from commissioning phase report # else: # raise Exception('Which tmp calibration constant for this mode ?') # print '--> caltmp=%f' % caltmp # ssr *= np.sqrt(10 ** (caltmp / 10.)) ########## /TMP calibration constant ########## dim = ssr.shape # Set contrast if vmin == None or vmax == None: if contrast == None: if sensor_mode == 'WV': contrast = 'relative' else: contrast = 'sea' if contrast == 'relative': if sensor_mode == 'WV': noborder = [ slice(int(dim[0] * .05), int(dim[0] * .95)), slice(int(dim[1] * .05), int(dim[1] * .95)) ] else: noborder = [ slice(int(dim[0] * .05), int(dim[0] * .95)), slice(int(dim[1] * .1), int(dim[1] * .9)) ] values = ssr[noborder] if landmaskpath != None and os.path.exists(landmaskpath): lmspacing = np.round(sarim.meters2pixels(111.32 / 120 * 1000)) lmspacing -= np.mod(lmspacing, spacing) lon = sarim.get_data('lon', spacing=lmspacing) lat = sarim.get_data('lat', spacing=lmspacing) lmdim = (lon.shape[0] + 1, lon.shape[1] + 1) landmask = np.ones(lmdim, dtype=bool) landmask[:-1, :-1] = get_landmask(lon, lat, landmaskpath) lmfac = lmspacing / spacing landmask = np.repeat(landmask, lmfac[0], axis=0) landmask = np.repeat(landmask, lmfac[1], axis=1) seaindex = np.where(landmask[noborder] == False) if seaindex[0].size >= ssr.size * 0.01: values = values[seaindex] if vmin == None: vmin = scoreatpercentile(values, 0.1) if vmax == None: vmax = scoreatpercentile(values, 99.9) elif contrast == 'sea': if sensor_polarisation in ['HH', 'VV']: if vmin == None: vmin = 0. if vmax == None: vmax = 2. else: if vmin == None: vmin = 1. if vmax == None: vmax = 3. elif contrast == 'ice': if sensor_polarisation in ['HH', 'VV']: if vmin == None: vmin = 0. if vmax == None: vmax = 3.5 else: if vmin == None: vmin = 1. if vmax == None: vmax = 5. else: raise Exception('Unknown contrast name.') print '--> vmin=%f vmax=%f' % (vmin, vmax) ssr = ssr[::-1, :] # keep SAR orientation for geotiff geoloc = sarim.get_info('geolocation_grid') gcplin = (dim[0] * spacing[0] - 1 - geoloc['line'] + 0.5) / spacing[0] gcppix = (geoloc['pixel'] + 0.5) / spacing[1] gcplon = geoloc['longitude'] gcplat = geoloc['latitude'] gcphei = geoloc['height'] if gcp2height is not None: geod = pyproj.Geod(ellps='WGS84') gcpforw, gcpback, _ = geod.inv(gcplon[:, :-1], gcplat[:, :-1], gcplon[:, 1:], gcplat[:, 1:]) gcpforw = np.hstack((gcpforw, gcpforw[:, [-1]])) gcpback = np.hstack((gcpback[:, [0]], gcpback)) gcpinc = geoloc['incidence_angle'] mvdist = (gcp2height - gcphei) / np.tan(np.deg2rad(gcpinc)) mvforw = gcpforw indneg = np.where(mvdist < 0) mvdist[indneg] = -mvdist[indneg] mvforw[indneg] = gcpback[indneg] _gcplon, _gcplat, _ = geod.fwd(gcplon, gcplat, mvforw, mvdist) gcplon = _gcplon gcplat = _gcplat gcphei.fill(gcp2height) if gcplon.min() < -135 and gcplon.max() > 135: gcplon[np.where(gcplon < 0)] += 360. # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') if sensor_polarisation in ['HH', 'VV']: metadata['product_name'] = 'SAR_roughness' else: metadata['product_name'] = 'SAR_roughness_crosspol' metadata['name'] = dataname metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = 'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'sea surface roughness' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = sarim._mapper._handler.GetGCPProjection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] scale = (vmax - vmin) / 254. offset = vmin indzero = np.where(ssr == 0) array = np.clip(np.round((ssr - offset) / scale), 0, 254).astype('uint8') array[indzero] = 255 band.append({ 'array': array, 'scale': scale, 'offset': offset, 'description': 'sea surface roughness', 'unittype': '', 'nodatavalue': 255, 'parameter_range': [vmin, vmax] }) # Write if write_netcdf == False: print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile) elif write_netcdf == True: print 'Write netcdf' ncfile = stfmt.format_ncfilename(outdir, metadata, create_dir=True) band[0]['name'] = 'sea_surface_roughness' band[0]['long_name'] = 'sea surface roughness' band[0]['unittype'] = '1' metadata['spatial_resolution'] = mspacing.min() stfmt.write_netcdf(ncfile, metadata, geolocation, band, 'swath', ngcps=gcplon.shape)
def sar_wave(infile, outdir, pngkml=False): """ """ # Read/Process data print 'Read/Process data' sarwave = SAFEOCNNCFile(infile, product='WAVE') mission = sarwave.read_global_attribute('missionName') if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' else: raise Exception('S1A mission expected.') # start_time = sarwave.get_start_time() # WARNING : whole SAFE for imagettes ! # stop_time = sarwave.get_end_time() # WARNING : whole SAFE for imagettes ! start_t = sarwave.read_global_attribute('firstMeasurementTime') if '.' in start_t: start_time = datetime.strptime(start_t, '%Y-%m-%dT%H:%M:%S.%fZ') else: start_time = datetime.strptime(start_t, '%Y-%m-%dT%H:%M:%SZ') stop_t = sarwave.read_global_attribute('lastMeasurementTime') if '.' in stop_t: stop_time = datetime.strptime(stop_t, '%Y-%m-%dT%H:%M:%S.%fZ') else: stop_time = datetime.strptime(stop_t, '%Y-%m-%dT%H:%M:%SZ') heading = sarwave.read_values('oswHeading') if np.sin((90 - heading[0, 0]) * np.pi / 180) > 0: sensor_pass = '******' else: sensor_pass = '******' safe_name = os.path.basename(os.path.dirname(os.path.dirname(infile))) sensor_mode = safe_name.split('_')[1] if sensor_mode not in ['WV', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6']: raise Exception('WV/S[1-6] modes expected.') sensor_swath = os.path.basename(infile).split('-')[1].upper() sensor_polarisation = sarwave.read_global_attribute('polarisation') datagroup = safe_name.replace('.SAFE', '') pid = datagroup.split('_')[-1] dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid # Make wave spectrum figure spec = sarwave.read_values('oswPolSpec') k = sarwave.read_values('oswK') phi = sarwave.read_values('oswPhi') npartitions = sarwave.get_dimsize('oswPartitions') partitions = sarwave.read_values('oswPartitions') # TMP Bug : there are now 3 partitions, numbered 0, 1 and 3 ... if npartitions == 3: indp2 = np.where(partitions == 2) indp3 = np.where(partitions == 3) if indp2[0].size == 0 and indp3[0].size != 0: partitions[indp3] = 2 # /TMP hs = sarwave.read_values('oswHs') flag = sarwave.read_values('oswLandFlag') if sensor_mode == 'WV': imnum = int( os.path.splitext(os.path.basename(infile))[0].split('-')[-1]) else: imnum = None spec_size = (512, 512) fontsize = 'small' cmap = getColorMap(rgbFile='wind.pal') fig = make_spec_fig(spec, k, phi, heading, npartitions, partitions, hs, flag, imnum=imnum, spec_size=spec_size, fontsize=fontsize, cmap=cmap) rgb = fig2rgb(fig) plt.close(fig) # Make geolocation if sensor_mode == 'WV': lon = sarwave.read_values('lon')[0, 0] lat = sarwave.read_values('lat')[0, 0] grdrasize = sarwave.read_values('oswGroundRngSize')[0, 0] grdazsize = sarwave.read_values('oswAziSize')[0, 0] geod = pyproj.Geod(ellps='WGS84') lons = np.repeat(lon, 2) lats = np.repeat(lat, 2) az = heading[0, 0] + [0., 180.] dist = np.repeat(grdazsize / 2., 2) lonsmid, latsmid, dummy = geod.fwd(lons, lats, az, dist) lons = np.repeat(lonsmid, 2) lats = np.repeat(latsmid, 2) az = heading[0, 0] + [-90, 90., 90., -90.] dist = np.repeat(grdrasize / 2., 4) gcplon, gcplat, dummy = geod.fwd(lons, lats, az, dist) gcppix = np.array([0, spec_size[0], spec_size[0], 0]) gcplin = np.array([0, 0, spec_size[1], spec_size[1]]) if np.sin((90 - heading[0, 0]) * np.pi / 180) < 0: # descending pass gcppix = spec_size[0] - gcppix gcplin = spec_size[1] - gcplin gcphei = np.zeros(gcplin.size) else: gcplon = sarwave.read_values('lon') gcplat = sarwave.read_values('lat') gcphei = np.zeros(gcplon.shape) nra = sarwave.get_dimsize('oswRaSize') pix = np.arange(nra) * spec_size[0] + spec_size[0] / 2. naz = sarwave.get_dimsize('oswAzSize') lin = np.arange(naz - 1, -1, -1) * spec_size[1] + spec_size[1] / 2. gcppix, gcplin = np.meshgrid(pix, lin) if np.sin((90 - heading[0, 0]) * np.pi / 180) < 0: # descending pass gcppix = nra * spec_size[0] - gcppix gcplin = naz * spec_size[1] - gcplin if gcplon.min() < -135 and gcplon.max() > 135: gcplon[np.where(gcplon < 0)] += 360. # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = 'SAR_wave' metadata['name'] = dataname metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = '' #'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = '' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] band.append({'array': rgb[:, :, 0]}) band.append({'array': rgb[:, :, 1]}) band.append({'array': rgb[:, :, 2]}) # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile)
def sar_doppler(infile, outdir, pngkml=False, vmin=-2.5, vmax=2.5, vmin_pal=-2.5, vmax_pal=2.5): """ """ # Read/Process data print 'Read/Process data' sardop = SAFEOCNNCFile(infile, product='DOPPLER') mission = sardop.read_global_attribute('missionName') if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' else: raise Exception('S1A mission expected.') start_time = sardop.get_start_time() stop_time = sardop.get_end_time() heading = sardop.read_values('rvlHeading') if np.sin((90 - heading.mean()) * np.pi / 180) > 0: sensor_pass = '******' else: sensor_pass = '******' safe_name = os.path.basename(os.path.dirname(os.path.dirname(infile))) sensor_mode = safe_name.split('_')[1] if sensor_mode not in ['S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'IW', 'EW']: raise Exception('S[1-6]/IW/EW modes expected.') sensor_swath = os.path.basename(infile).split('-')[1].upper() sensor_polarisation = sardop.read_global_attribute('polarisation') datagroup = safe_name.replace('.SAFE', '') pid = datagroup.split('_')[-1] dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid if 'rvlSwath' in sardop.get_dimensions(): nswath = sardop.get_dimsize('rvlSwath') else: nswath = 1 for iswath in range(nswath): if nswath == 1: radvel = sardop.read_values('rvlRadVel') landflag = sardop.read_values('rvlLandFlag') lon = sardop.read_values('lon') lat = sardop.read_values('lat') name = dataname else: radvel = sardop.read_values('rvlRadVel')[:, :, iswath] landflag = sardop.read_values('rvlLandFlag')[:, :, iswath] lon = sardop.read_values('lon')[:, :, iswath] lat = sardop.read_values('lat')[:, :, iswath] valid = np.where((ma.getmaskarray(lon) == False) & \ (ma.getmaskarray(lat) == False)) slices = [slice(valid[0].min(), valid[0].max() + 1), slice(valid[1].min(), valid[1].max() + 1)] radvel = radvel[slices] landflag = landflag[slices] lon = lon[slices] lat = lat[slices] name = dataname + '-' + str(iswath+1) if sensor_pass == 'Ascending': radvel *= -1 ngcps = np.ceil(np.array(lon.shape) / 10.) + 1 pix = np.linspace(0, lon.shape[1] - 1, num=ngcps[1]).round().astype('int32') lin = np.linspace(0, lon.shape[0] - 1, num=ngcps[0]).round().astype('int32') pix2d, lin2d = np.meshgrid(pix, lin) gcplon = lon[lin2d, pix2d] gcplat = lat[lin2d, pix2d] gcppix = pix2d + 0.5 gcplin = lin2d + 0.5 gcphei = np.zeros(ngcps) if gcplon.min() < -135 and gcplon.max() > 135: gcplon[np.where(gcplon < 0)] += 360. # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = 'SAR_doppler' metadata['name'] = name metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = '' #'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = 'radial horizontal velocities' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = stfmt.format_gdalprojection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] #indndv = np.where(landflag != 0) offset, scale = vmin, (vmax-vmin)/254. np.clip(radvel, vmin, vmax, out=radvel) array = np.round((radvel - offset) / scale).astype('uint8') #array[indndv] = 255 colortable = stfmt.format_colortable('doppler', vmax=vmax, vmax_pal=vmax_pal, vmin=vmin, vmin_pal=vmin_pal) band.append({'array':array, 'scale':scale, 'offset':offset, 'description':'radial horizontal velocities', 'unittype':'m/s', 'nodatavalue':255, 'parameter_range':[vmin, vmax], 'colortable':colortable}) # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile)
def sar_xspec(infile, outdir, pngkml=False, vmax_re=None, vmax_im=None, make_rgb=True, ncolors=74): """ """ # Read/Process data print 'Read/Process data' sarim = sarimage(infile) mission = sarim.get_info('mission') if mission == 'S1A': sensor_name = 'Sentinel-1A' sensor_platform = 'Sentinel-1A' source_provider = 'ESA' else: raise Exception('S1A mission expected.') product = sarim.get_info('product') if product != 'SLC': raise Exception('SLC expected.') timefmt = '%Y-%m-%dT%H:%M:%S.%f' start_time = datetime.strptime(sarim.get_info('start_time'), timefmt) stop_time = datetime.strptime(sarim.get_info('stop_time'), timefmt) sensor_pass = sarim.get_info('pass') sensor_mode = sarim.get_info('mode') sensor_swath = sarim.get_info('swath') sensor_polarisation = sarim.get_info('polarisation') datagroup = sarim.get_info('safe_name').replace('.SAFE', '') pid = datagroup.split('_')[-1] dataname = os.path.splitext(os.path.basename(infile))[0] + '-' + pid # Compute SAR Xspec and make figures if sensor_mode == 'WV': azi_periodo_size = 1024 azi_dist, ran_dist = 20000., 20000. # ignored in WV case xspec_size = (512, 512) fontsize = 'small' elif re.match(r'^S[1-6]$', sensor_mode) != None: azi_periodo_size = 1024 azi_dist, ran_dist = 10000., 10000. xspec_size = (512, 512) #(256, 256) fontsize = 'small' #'x-small' elif sensor_mode in ['IW', 'EW']: azi_periodo_size = 512 azi_dist, ran_dist = 10000., 10000. xspec_size = (512, 512) #(256, 256) fontsize = 'small' #'x-small' else: raise Exception('Which settings for this mode ?') sarxspec = sarimage2sarxspec_loop(sarim, azi_dist=azi_dist, ran_dist=ran_dist, azi_periodo_size=azi_periodo_size) cmap_re, cmap_im = get_cmaps(ncolors=ncolors) fig_re = make_sarxspec_fig(sarxspec, part='real', tau=1, kmax=2*np.pi/75, kmin=2*np.pi/400, xspec_size=xspec_size, uniq_vmax=True, north_oriented=True, klim=[2*np.pi/400, 2*np.pi/200, 2*np.pi/100], north_arrow=False, index_pos=None, vmax_pos='tr', nvar_pos=None, fontsize=fontsize, vmax=vmax_re, cmap=cmap_re) if sensor_mode == 'WV': ax = fig_re.gca() imnum = sarim.get_info('image_number') imnumtxt = '#{:03d}'.format(imnum) ax.text(0.51, 0.99, imnumtxt, transform=ax.transAxes, ha='left', va='top', fontsize=fontsize) if make_rgb == True: rgb_re = fig2rgb(fig_re) #print nuniqcolors(rgb_re) else: img_re, pal_re = fig2imgpal(fig_re, cmap_re) plt.close(fig_re) fig_im = make_sarxspec_fig(sarxspec, part='imag', tau=1, kmax=2*np.pi/75, kmin=2*np.pi/400, xspec_size=xspec_size, uniq_vmax=True, north_oriented=True, klim=[2*np.pi/400, 2*np.pi/200, 2*np.pi/100], north_arrow=False, index_pos=None, vmax_pos='tr', nvar_pos=None, fontsize=fontsize, vmax=vmax_im, cmap=cmap_im) if sensor_mode == 'WV': ax = fig_im.gca() imnum = sarim.get_info('image_number') imnumtxt = '#{:03d}'.format(imnum) ax.text(0.51, 0.99, imnumtxt, transform=ax.transAxes, ha='left', va='top', fontsize=fontsize) if make_rgb == True: rgb_im = fig2rgb(fig_im) #print nuniqcolors(rgb_im) else: img_im, pal_im = fig2imgpal(fig_im, cmap_im) plt.close(fig_im) if make_rgb == True: nlin, npix = rgb_re.shape[0:2] else: nlin, npix = img_re.shape # Handle GCPS # geoloc = sarim.get_info('geolocation_grid') # pix = np.array([0, geoloc['npixels']-1, geoloc['npixels']-1, 0]) # lin = np.array([0, 0, geoloc['nlines']-1, geoloc['nlines']-1]) # gcplon = geoloc['longitude'][lin, pix] # gcplat = geoloc['latitude'][lin, pix] # gcphei = np.zeros(4) # gcppix = np.array([0, 512, 512, 0]) # gcplin = np.array([0, 0, 512, 512]) ############################################# # geoloc = sarim.get_info('geolocation_grid') # gcplon = geoloc['longitude'] # gcplat = geoloc['latitude'] # gcphei = np.zeros(gcplon.shape) # geod = pyproj.Geod(ellps='WGS84') # nglin, ngpix = geoloc['nlines'], geoloc['npixels'] # ra_geo_spacing = geod.inv(gcplon[nglin/2, 0:-1], gcplat[nglin/2, 0:-1], # gcplon[nglin/2, 1:], gcplat[nglin/2, 1:])[2] # ra_geo_dist = np.hstack((0., ra_geo_spacing.cumsum())) # ra_geo_ndist = ra_geo_dist/ra_geo_dist[-1] # gcppix = np.tile((ra_geo_ndist*npix).reshape((1, -1)), (nglin, 1)) # az_geo_spacing = geod.inv(gcplon[0:-1, ngpix/2], gcplat[0:-1, ngpix/2], # gcplon[1:, ngpix/2], gcplat[1:, ngpix/2])[2] # az_geo_dist = np.hstack((0., az_geo_spacing.cumsum())) # az_geo_ndist = az_geo_dist/az_geo_dist[-1] # gcplin = np.tile((az_geo_ndist*nlin).reshape((-1, 1)), (1, ngpix)) # import pdb ; pdb.set_trace() ############################################# #import pdb ; pdb.set_trace() ext_min = sarxspec[0][0].get_info('extent')[0:2] ext_max = sarxspec[-1][-1].get_info('extent')[2:4] # geoloc = sarim.get_info('geolocation_grid') # nglin, ngpix = geoloc['nlines'], geoloc['npixels'] nglin, ngpix = len(sarxspec)+1, len(sarxspec[0])+1 pix = np.hstack((np.round(np.linspace(ext_min[1], ext_max[1], num=ngpix)), np.ones(nglin)*ext_max[1], np.round(np.linspace(ext_max[1], ext_min[1], num=ngpix)), np.ones(nglin)*ext_min[1])) lin = np.hstack((np.ones(ngpix)*ext_min[0], np.round(np.linspace(ext_min[0], ext_max[0], num=nglin)), np.ones(ngpix)*ext_max[0], np.round(np.linspace(ext_max[0], ext_min[0], num=nglin)))) lon, lat = np.zeros(pix.size), np.zeros(pix.size) for ipt in range(pix.size): ext = [lin[ipt], pix[ipt], lin[ipt], pix[ipt]] lon[ipt] = sarim.get_data('lon', extent=ext, spacing=1) lat[ipt] = sarim.get_data('lat', extent=ext, spacing=1) ndist = np.zeros(pix.size) lim = [0, ngpix, ngpix+nglin, 2*ngpix+nglin, 2*ngpix+2*nglin] geod = pyproj.Geod(ellps='WGS84') for iside in range(4): pt0, pt1 = lim[iside], lim[iside+1]-1 ddist = geod.inv(lon[pt0:pt1], lat[pt0:pt1], lon[pt0+1:pt1+1], lat[pt0+1:pt1+1])[2] dist = ddist.cumsum() ndist[pt0:pt1+1] = np.hstack((0., dist))/dist.max() gcppix = np.hstack((ndist[lim[0]:lim[1]-1]*npix, np.ones(nglin-1)*npix, (1-ndist[lim[2]:lim[3]-1])*npix, np.zeros(nglin-1))) gcplin = np.hstack((np.zeros(ngpix-1), ndist[lim[1]:lim[2]-1]*nlin, np.ones(ngpix-1)*nlin, (1-ndist[lim[3]:lim[4]-1])*nlin)) gcplon = np.hstack((lon[lim[0]:lim[1]-1], lon[lim[1]:lim[2]-1], lon[lim[2]:lim[3]-1], lon[lim[3]:lim[4]-1])) gcplat = np.hstack((lat[lim[0]:lim[1]-1], lat[lim[1]:lim[2]-1], lat[lim[2]:lim[3]-1], lat[lim[3]:lim[4]-1])) gcphei = np.zeros(gcplon.size) #import pdb ; pdb.set_trace() if gcplon.min() < -135 and gcplon.max() > 135: gcplon[np.where(gcplon < 0)] += 360. ############################################# if sensor_pass == 'Descending': gcppix = npix-gcppix gcplin = nlin-gcplin gcplin = nlin-gcplin # because fig will be read and wrote from top to bottom # Loop on part and write for part in ['real', 'imag']: print part if part == 'real': product = 'SAR_cross-spectrum_real' nameext = '-xspec_re' if make_rgb == True: rgb = rgb_re else: img = img_re pal = pal_re elif part == 'imag': product = 'SAR_cross-spectrum_imaginary' nameext = '-xspec_im' if make_rgb == True: rgb = rgb_im else: img = img_im pal = pal_im # Construct metadata/geolocation/band(s) print 'Construct metadata/geolocation/band(s)' metadata = {} (dtime, time_range) = stfmt.format_time_and_range(start_time, stop_time, units='ms') metadata['product_name'] = product metadata['name'] = dataname + nameext metadata['datetime'] = dtime metadata['time_range'] = time_range metadata['source_URI'] = infile metadata['source_provider'] = source_provider metadata['processing_center'] = 'OceanDataLab' metadata['conversion_software'] = 'Syntool' metadata['conversion_version'] = '0.0.0' metadata['conversion_datetime'] = stfmt.format_time(datetime.utcnow()) metadata['parameter'] = '' metadata['type'] = 'remote sensing' metadata['sensor_type'] = 'SAR' metadata['sensor_name'] = sensor_name metadata['sensor_platform'] = sensor_platform metadata['sensor_mode'] = sensor_mode metadata['sensor_swath'] = sensor_swath metadata['sensor_polarisation'] = sensor_polarisation metadata['sensor_pass'] = sensor_pass metadata['datagroup'] = datagroup geolocation = {} geolocation['projection'] = sarim._mapper._handler.GetGCPProjection() geolocation['gcps'] = stfmt.format_gdalgcps(gcplon, gcplat, gcphei, gcppix, gcplin) band = [] if make_rgb == True: band.append({'array': rgb[:, :, 0]}) band.append({'array': rgb[:, :, 1]}) band.append({'array': rgb[:, :, 2]}) else: band.append({'array': img, 'nodatavalue': 255, 'colortable': palette2colortable(pal)}) # Write geotiff print 'Write geotiff' tifffile = stfmt.format_tifffilename(outdir, metadata, create_dir=True) stfmt.write_geotiff(tifffile, metadata, geolocation, band) # Write projected png/kml if pngkml == True: print 'Write projected png/kml' stfmt.write_pngkml_proj(tifffile)