def exercise1c(): """describe how fiber length influences the force-length curve. Compare a muscle comprised of short muscle fibers to a muscle comprised of long muscle fibers. Change the parameter, you can use system_parameters.py::MuscleParameters before instantiating the muscle No more than 2 plots are required. """ # Defination of muscles parameters = MuscleParameters() pylog.warning("Loading default muscle parameters") pylog.info(parameters.showParameters()) pylog.info("Use the parameters object to change the muscle parameters") # Create muscle object muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) # You can still access the muscle inside the system by doing # >>> sys.muscle.L_OPT # To get the muscle optimal length muscle_lengths = np.arange(.1, .26, .03) max_muscle_active_forces = [] max_muscle_passive_forces = [] max_total_force = [] max_force_stretch = [] # Evalute for a single muscle stretch for muscle_length in muscle_lengths: parameters.l_opt = muscle_length muscle = Muscle(parameters) pylog.warning("Isometric muscle contraction to be completed") # Instatiate isometric muscle system sys = IsometricMuscleSystem() # Add the muscle to the system sys.add_muscle(muscle) if muscle_length < .16: start_stretch_length = .16 else: start_stretch_length = muscle_length muscle_stretches = np.arange( start_stretch_length, 1.2 * muscle_length + .16, (1.2 * muscle_length + .16 - start_stretch_length) / 40) muscle_active_forces = [] muscle_passive_forces = [] total_force = [] # Evalute for a single muscle stretch for muscle_stretch in muscle_stretches: # Evalute for a single muscle stimulation muscle_stimulation = 1. # Set the initial condition x0 = [0.0, sys.muscle.L_OPT] # x0[0] --> muscle stimulation intial value # x0[1] --> muscle contracticle length initial value # Set the time for integration t_start = 0.0 t_stop = 0.3 time_step = 0.001 time = np.arange(t_start, t_stop, time_step) # Run the integration result = sys.integrate(x0=x0, time=time, time_step=time_step, stimulation=muscle_stimulation, muscle_length=muscle_stretch) muscle_active_forces.append(result.active_force[-1]) muscle_passive_forces.append(result.passive_force[-1]) total_force.append(result.active_force[-1] + result.passive_force[-1]) max_muscle_active_forces.append(max(muscle_active_forces)) active_max_index = muscle_active_forces.index( max(muscle_active_forces)) max_muscle_passive_forces.append( muscle_passive_forces[active_max_index]) max_total_force.append(total_force[active_max_index]) max_force_stretch.append(muscle_stretches[active_max_index]) # Plotting max force for each muscle length over different stretch values. Uncomment to see (adds ~8 plots) # plt.figure('Isometric muscle experiment. L_opt = %.2f'%(muscle_length)) # plt.plot(muscle_stretches, muscle_active_forces, label='active') # plt.plot(muscle_stretches, muscle_passive_forces, label='passive') # plt.plot(muscle_stretches, total_force, label='total') # plt.title('Isometric muscle experiment 1C, L_opt = %.2f'%(muscle_length)) # plt.xlabel('Stretch Length [m]') # plt.ylabel('Muscle Force [N]') # plt.legend(loc='upper left') # plt.grid() # Plotting active on its own plt.figure('Isometric muscle experiment, Active Force') plt.plot(muscle_stretches, muscle_active_forces, label=('L_opt = %.2f' % (muscle_length))) plt.title('Isometric muscle experiment: Active Force vs L_Opt') plt.xlabel('Stretch Length [m]') plt.ylabel('Active Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # Plotting passive on its own plt.figure('Isometric muscle experiment, Passive Force') plt.plot(muscle_stretches, muscle_passive_forces, label=('L_opt = %.2f' % (muscle_length))) plt.title('Isometric muscle experiment: Passive Force vs L_Opt') plt.xlabel('Stretch Length [m]') plt.ylabel('Passive Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # Plot max vals plt.figure('Isometric muscle experiment max Force') plt.plot(muscle_lengths, max_muscle_active_forces, label='active') #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive') #plt.plot(muscle_lengths, max_total_force, label='total') plt.title('Isometric muscle experiment 1C, Max') plt.xlabel('Muscle Optimal Length [m]') plt.ylabel('Max Muscle Force [N]') plt.legend(loc='upper left') plt.grid() # print(max_muscle_active_forces) # Plot max stretch lengths of max vals plt.figure('Isometric muscle experiment max Force stretch') plt.plot(muscle_lengths, max_force_stretch, label='active') #plt.plot(muscle_lengths, max_muscle_passive_forces, label='passive') #plt.plot(muscle_lengths, max_total_force, label='total') plt.title('Isometric muscle experiment 1C, Max Stretch') plt.xlabel('Muscle Optimal Length [m]') plt.ylabel('Muscle Stretch of Max Force [m]') plt.legend(loc='upper left') plt.grid()
def system_init(): """Initialize default system.""" ########## PENDULUM ########## # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## ADD SYSTEMS ########## # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ########## INITIALIZATION ########## t_max = 2 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.0]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ########## System Simulation ########## sim = SystemSimulation(sys) # Instantiate Simulation object # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state return sim
def exercise2(): """ Main function to run for Exercise 2. Parameters ---------- None Returns ------- None """ ''' sim = system_init() # Add muscle activations to the simulation # Here you can define your muscle activation vectors # that are time dependent act1 = np.ones((len(sim.time), 1)) * 0.05 act2 = np.ones((len(sim.time), 1)) * 0.05 activations = np.hstack((act1, act2)) # Method to add the muscle activations to the simulation sim.add_muscle_stimulations(activations) #: If you would like to perturb the pedulum model then you could do # so by sim.sys.pendulum_sys.parameters.PERTURBATION = True # The above line sets the state of the pendulum model to zeros between # time interval 1.2 < t < 1.25. You can change this and the type of # perturbation in # pendulum_system.py::pendulum_system function # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() ''' ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2a pylog.info("2a") theta = np.arange(np.pi / 4, np.pi * 3 / 4, 0.001) temp_a1 = 0.35 ratios = [ 0.2, 0.5, 1., 2., 5., ] L2_s = [] h2_s = [] for temp_ratio in ratios: temp_a2 = temp_a1 * temp_ratio temp_L2 = np.sqrt(temp_a1 * temp_a1 + temp_a2 * temp_a2 + 2 * temp_a1 * temp_a2 * np.cos(theta)) temp_h2 = (temp_a1 * temp_a2 * np.sin(theta)) / temp_L2 L2_s = L2_s + [temp_L2] h2_s = h2_s + [temp_h2] plt.figure( '2a. Relationship between muscle length and pendulum angular position') plt.title( 'Relationship between muscle length and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, L2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure( '2a. Relationship between moment arm and pendulum angular position') plt.title('Relationship between moment arm and pendulum angular position') for i in range(len(ratios)): plt.plot(theta, h2_s[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Moment Arm [m]') temp_legends = [ 'ratio of a2/a1 = ' + format((temp_ratio), '.2f') for temp_ratio in ratios ] plt.legend(temp_legends) plt.grid() plt.show() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2b pylog.info("2b") #initialization P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## ADD SYSTEMS ########## # Create a system with Pendulum and Muscles using the System Class # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system ########## INITIALIZATION ########## t_max = 2 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.0]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0 = np.concatenate((x0_P, x0_M)) # System initial conditions ########## System Simulation ########## sim = SystemSimulation(sys) # Instantiate Simulation object # Simulate the system for given time sim.initalize_system(x0, time) # Initialize the system state omega = 1.5 sin_act_1 = np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 #sin_act_2=np.sin(2*np.pi*omega*time+np.pi/2).reshape(len(time),1) sin_act_2 = -np.sin(2 * np.pi * omega * time).reshape(len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) plt.figure('2b. Activation wave') plt.title('Activation wave') plt.plot(time, sin_act_1, label='Activation 1') plt.plot(time, sin_act_2, label='Activation 2') plt.xlabel('Time [s]') plt.ylabel('Activation') plt.grid() plt.legend() # without pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle without pertubation') plt.title('Pendulum Phase without pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() # with pertubation sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = True sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results plt.figure('2b. Limit cycle with pertubation') plt.title('Pendulum Phase with pertubation') plt.plot( res[:, 1], res[:, 2], ) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.legend() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 2c pylog.info("2c") # different frequencies omegas = 1.5 * np.array([0.5, 2.]) positions = [] vels = [] for temp_omega in omegas: sin_act_1 = np.sin(2 * np.pi * temp_omega * time).reshape(len(time), 1) sin_act_1[sin_act_1 < 0] = 0 sin_act_2 = -np.sin(2 * np.pi * temp_omega * time).reshape( len(time), 1) sin_act_2[sin_act_2 < 0] = 0 activations = np.hstack((sin_act_1, sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions = positions + [res[:, 1]] vels = vels + [res[:, 2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(omegas)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Velocity [rad/s]') temp_legends = [ 'ratio of frequency = ' + format((temp_omega / 1.5), '.2f') for temp_omega in omegas ] plt.legend(temp_legends) plt.grid() plt.show() ''' # different frequencies omegas=1.5*np.array([0.2,0.5,1.,2.,5.]) positions=[] vels=[] for temp_omega in omegas: sin_act_1=np.sin(2*np.pi*temp_omega*time).reshape(len(time),1) sin_act_1[sin_act_1<0]=0 sin_act_2=np.sin(2*np.pi*temp_omega*(np.pi/6+time)).reshape(len(time),1) sin_act_2[sin_act_2<0]=0 activations = np.hstack((sin_act_1,sin_act_2)) sim.add_muscle_stimulations(activations) sim.initalize_system(x0, time) sim.sys.pendulum_sys.parameters.PERTURBATION = False sim.simulate() res = sim.results() muscle1_results = sim.sys.muscle_sys.muscle_1.results muscle2_results = sim.sys.muscle_sys.muscle_2.results positions=positions+[res[:, 1]] vels=vels+[res[:,2]] plt.figure('2c.Pendulum phase plane with stimulation frequencies') plt.title('Pendulum phase plane with stimulation frequencies') for i in range(len(ratios)): plt.plot(positions[i], vels[i]) plt.xlabel('Angular Position [rad]') plt.ylabel('Muscle Length [m]') temp_legends=['ratio of frequency = '+ format((temp_omega/1.5),'.2f') for temp_omega in omegas] plt.legend(temp_legends) plt.grid() plt.show() ''' # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys) if not DEFAULT["save_figures"]: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def system_init(): """ Use this function to create a new default system. """ ########## PENDULUM ########## # Define and Setup your pendulum model here # Check Pendulum.py for more details on Pendulum class P_params = PendulumParameters() # Instantiate pendulum parameters P_params.L = 1.0 # To change the default length of the pendulum P_params.m = 0.25 # To change the default mass of the pendulum pendulum = PendulumSystem(P_params) # Instantiate Pendulum object #### CHECK OUT Pendulum.py to ADD PERTURBATIONS TO THE MODEL ##### pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## # Define and Setup your muscle model here # Check MuscleSystem.py for more details on MuscleSystem class m1_param = MuscleParameters() # Instantiate Muscle 1 parameters m1_param.f_max = 200. # To change Muscle 1 max force m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() # Instantiate Muscle 2 parameters m2_param.f_max = 200. # To change Muscle 2 max force m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) # Instantiate Muscle 1 object m2 = Muscle('m2', m2_param) # Instantiate Muscle 2 object # Use the MuscleSystem Class to define your muscles in the system # Instantiate Muscle System with two muscles muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) # Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) # Origin of Muscle 1 m1_insertion = np.asarray([0.0, 0.15]) # Insertion of Muscle 1 m2_origin = np.asarray([0.0, 0.8]) # Origin of Muscle 2 m2_insertion = np.asarray([0.0, -0.3]) # Insertion of Muscle 2 # Attach the muscles muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ########## Network ########## # The network consists of four neurons N_params = NetworkParameters() # Instantiate default network parameters N_params.D = 1 # To change a network parameter # Similarly to change w -> N_params.w = (4x4) array N_params.tau = [0.02, 0.02, 0.1, 0.1] N_params.w = [[0, -5, 5, -5], [-5, 0, -5, 5], [-5, 0, 0, 0], [0, -5, 0, 0]] N_params.b = [3.0, 3.0, -3.0, -3.0] N_params.w = np.transpose(N_params.w) # Create a new neural network with above parameters neural_network = NeuralSystem(N_params) pylog.info('Neural system initialized \n {}'.format( N_params.showParameters())) ########## ADD SYSTEMS ########## # Create system of Pendulum, Muscles and neural network using SystemClass # Check System.py for more details on System class sys = System() # Instantiate a new system sys.add_pendulum_system(pendulum) # Add the pendulum model to the system sys.add_muscle_system(muscles) # Add the muscle model to the system # Add the neural network to the system sys.add_neural_system(neural_network) ##### Time ##### t_max = 2.5 # Maximum simulation time time = np.arange(0., t_max, 0.001) # Time vector ##### Model Initial Conditions ##### x0_P = np.asarray([np.pi / 2, 0.]) # Pendulum initial condition # Muscle Model initial condition l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0_N = np.asarray([-0.5, 1, 0.5, 1]) # Neural Network Initial Conditions x0 = np.concatenate((x0_P, x0_M, x0_N)) # System initial conditions ##### System Simulation ##### # For more details on System Simulation check SystemSimulation.py # SystemSimulation is used to initialize the system and integrate # over time sim = SystemSimulation(sys) # Instantiate Simulation object sim.initalize_system(x0, time) # Initialize the system state return sim
def exercise3(): """ Main function to run for Exercise 3. Parameters ---------- None Returns ------- None """ ''' # Create system sim = system_init() # Add external inputs to neural network sim.add_external_inputs_to_network(np.ones((len(sim.time), 4))) # Integrate the system for the above initialized state and time sim.simulate() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # Obtain the states of the system after integration # res is np.asarray [time, states] # states vector is in the same order as x0 res = sim.results() # In order to obtain internal states of the muscle # you can access the results attribute in the muscle class muscle_1_results = sim.sys.muscle_sys.muscle_1.results muscle_2_results = sim.sys.muscle_sys.muscle_2.results # Plotting the results plt.figure('Pendulum') plt.title('Pendulum Phase') plt.plot(res[:, 1], res[:, 2]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad.s]') plt.grid() ''' ###################################################### # initialization ########## PENDULUM ########## P_params = PendulumParameters() P_params.L = 1.0 P_params.m = 0.25 pendulum = PendulumSystem(P_params) pylog.info('Pendulum model initialized \n {}'.format( pendulum.parameters.showParameters())) ########## MUSCLES ########## m1_param = MuscleParameters() m1_param.f_max = 200. m1_param.l_opt = 0.4 m1_param.l_slack = 0.45 m2_param = MuscleParameters() m2_param.f_max = 200. m2_param.l_opt = 0.4 m2_param.l_slack = 0.45 m1 = Muscle('m1', m1_param) m2 = Muscle('m2', m2_param) muscles = MuscleSystem(m1, m2) pylog.info('Muscle system initialized \n {} \n {}'.format( m1.parameters.showParameters(), m2.parameters.showParameters())) ######## Define Muscle Attachment points m1_origin = np.asarray([0.0, 0.9]) m1_insertion = np.asarray([0.0, 0.15]) m2_origin = np.asarray([0.0, 0.8]) m2_insertion = np.asarray([0.0, -0.3]) muscles.attach(np.asarray([m1_origin, m1_insertion]), np.asarray([m2_origin, m2_insertion])) ##### Time ##### t_max = 2.5 time = np.arange(0., t_max, 0.001) ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 3a pylog.info("3a") d = 1. tau = np.array([0.02, 0.02, 0.1, 0.1]) b = np.array([3., 3., -3., -3.]) w = np.zeros((4, 4)) w[0, 1] = w[0, 3] = w[1, 0] = w[1, 2] = -5 w[0, 2] = w[1, 3] = 5 w[2, 0] = w[3, 1] = -5 w = w.T N_params = NetworkParameters() N_params.D = d N_params.tau = tau N_params.b = b N_params.w = w neural_network = NeuralSystem(N_params) sys = System() sys.add_pendulum_system(pendulum) sys.add_muscle_system(muscles) sys.add_neural_system(neural_network) x0_P = np.asarray([np.pi / 2, 0.]) l_ce_0 = sys.muscle_sys.initialize_muscle_length(np.pi / 2) x0_M = np.asarray([0.05, l_ce_0[0], 0.05, l_ce_0[1]]) x0_N = np.asarray([-0.5, 1, 0.5, 1]) x0 = np.concatenate((x0_P, x0_M, x0_N)) sim = SystemSimulation(sys) sim.initalize_system(x0, time) sim.simulate() res = sim.results() positions = res[:, 1] vels = res[:, 2] plt.figure('3a. Activation with time ') plt.title('Activation with time') plt.plot(res[:, 0], res[:, 3], label="Activation 1") plt.plot(res[:, 0], res[:, 5], label="Activation 2") plt.xlabel('Time [s]') plt.ylabel('Activation') plt.legend() plt.grid() plt.show() # Plotting the results plt.figure('3a. Pendulum state with time') plt.title('Pendulum state with time') plt.plot(res[:, 0], positions) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') plt.grid() plt.show() # Plotting the results plt.figure('3a. Pendulum phase plot') plt.title('Pendulum phase plot') plt.plot(positions, vels) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') plt.grid() plt.show() ########################################################### ########################################################### ########################################################### ########################################################### ########################################################### ### code for 3b pylog.info("3b") all_positions = [] all_vels = [] all_time = [] all_act_1 = [] all_act_2 = [] external_drives = np.array([0, 0.2, 0.5, 1., 2., 5.]) for temp_drive in external_drives: sim = SystemSimulation(sys) sim.initalize_system(x0, time) sim.add_external_inputs_to_network( np.ones((len(sim.time), 4)) * temp_drive) sim.simulate() res = sim.results() all_time = all_time + [res[:, 0]] all_positions = all_positions + [res[:, 1]] all_vels = all_vels + [res[:, 2]] all_act_1 = all_act_1 + [res[:, 3]] all_act_2 = all_act_2 + [res[:, 5]] plt.figure('3a. Activation with time by different external drives') plt.title('Activation with time by different external drives') for i in range(len(external_drives)): plt.plot(all_time[i], all_act_1[i]) plt.plot(all_time[i], all_act_2[i]) plt.xlabel('Time [s]') plt.ylabel('Activation') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure('3b. Pendulum state with time by different external drives') plt.title('Pendulum state with time by different external drives') for i in range(len(external_drives)): plt.plot(all_time[i], all_positions[i]) plt.xlabel('Time [s]') plt.ylabel('Position [rad]') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() plt.figure('3a. Pendulum phase plot by different external drives') plt.title('Pendulum phase plot by different external drives') for i in range(len(external_drives)): plt.plot(all_positions[i], all_vels[i]) plt.xlabel('Position [rad]') plt.ylabel('Velocity [rad/s]') temp_legends = [ 'external drive: ' + format((temp_drive), '.2f') for temp_drive in external_drives ] plt.legend(temp_legends) plt.grid() plt.show() # To animate the model, use the SystemAnimation class # Pass the res(states) and systems you wish to animate simulation = SystemAnimation(res, sim.sys.pendulum_sys, sim.sys.muscle_sys, sim.sys.neural_sys) if DEFAULT["save_figures"] is False: # To start the animation simulation.animate() plt.show() else: figures = plt.get_figlabels() pylog.debug("Saving figures:\n{}".format(figures)) for fig in figures: plt.figure(fig) save_figure(fig) plt.close(fig)
def isometric_experiment(muscle_stimulation=1., ce_stretch_max=1.5, ce_stretch_min=0.5, nb_pts=1000, time_param=TimeParameters(), l_opt=None): """ Runs a experiments in isometric mode for multiple stretches, returns the results Parameters: - muscle_stimulation: applied stimulation. - ce_stretch_max: the maximal stretch to apply to the contractile element. - ce_stretch_min: the minimal stretch to apply to the contractile element. - nb_pts: the number of times the experiment should be ran between the min and max stretch. (i.e number of points in the results) - time_param: A TimeParameters object to pass the intended time parameters for every experiment. - l_opt: The optimal length of the contractile element. If None the default one is taken Returns every parameters for the experiments. """ # System definition parameters = MuscleParameters() if l_opt is not None: parameters.l_opt = l_opt muscle = Muscle(parameters) sys = IsometricMuscleSystem() sys.add_muscle(muscle) # Experiment parameters muscle_stretch_max = find_ce_stretch_iso(sys, ce_stretch_max, time_param) muscle_stretch_min = find_ce_stretch_iso(sys, ce_stretch_min, time_param) stretches = np.arange(muscle_stretch_min, muscle_stretch_max, muscle_stretch_max / nb_pts) x0 = [0] * StatesIsometric.NB_STATES.value x0[StatesIsometric.STIMULATION.value] = 0 x0[StatesIsometric.L_CE.value] = sys.muscle.L_OPT # Containers active_force = [] passive_force = [] total_force = [] l_ce = [] l_slack = [] l_mtc = [] # Experiences pylog.info( "Running isometric experiments for stretches (this might take a while)..." ) for stretch in stretches: result = sys.integrate(x0=x0, time=time_param.times, time_step=time_param.t_step, stimulation=muscle_stimulation, muscle_length=stretch) active_force.append(result.active_force[-1]) passive_force.append(result.passive_force[-1]) total_force.append(result.tendon_force[-1]) l_ce.append(result.l_ce[-1]) l_mtc.append(result.l_mtc[-1]) l_slack.append(result.l_mtc[-1] - result.l_ce[-1]) return active_force, passive_force, total_force, l_ce, l_slack, l_mtc