示例#1
0
def test_quad_cost_with_wrapping():
    p = create_params()
    n, k = p.n, p.k
    x_dim, u_dim = 3, 2
    a, b = p.a, p.b
    goal_x, goal_y = 10., 10.

    dubins = DubinsV1(p.dt, create_system_dynamics_params())

    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = np.array(np.tile(goal, (n, k, 1)))
    u_ref_nk2 = np.array(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory_ref = dubins.assemble_trajectory(x_ref_nk3, u_ref_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, dubins, p)
    x_nk3 = np.array(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = np.array(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = dubins.assemble_trajectory(x_nk3, u_nk2)
    cost_nk, _ = cost_fn.compute_trajectory_cost(trajectory)

    cost = .5 * (a * goal_x**2 + a * goal_y**2)
    assert (cost_nk.shape[0] == n and cost_nk.shape[1] == k)
    assert ((cost_nk == cost).all())

    H_xx_nkdd, H_xu_nkdf, H_uu_nkff, J_x_nkd, J_u_nkf = cost_fn.quad_coeffs(
        trajectory)
    assert (np.equal(H_xx_nkdd[0, 0], np.eye(x_dim)).all())
    assert ((H_xu_nkdf == 0.).all())
    assert (np.equal(H_uu_nkff[0, 0], np.eye(u_dim) * b).all())
示例#2
0
def test_custom_dubins_v1(plot=False):
    # Visualize One Trajectory for Debugging
    dt = .1
    n, k = 5, 50
    x_dim, u_dim = 3, 2
    # Generate Dubin's Model
    db = DubinsV1(dt, create_system_dynamics_params())

    # Generate Start State (x0, y0, t0)
    state_113 = np.array([[[0, 0, 0]]], dtype=np.float32)
    # Generate linear velocity controls
    v0 = 0.8
    t0 = 0.5
    v_1k = np.ones((k, 1)) * v0
    # v_1k = rand_array(from_range=(0, 10), size=(k,1))
    # Generate angular velocity controls
    # Randomly generate directions to control
    # w_1k = rand_array(from_range=(-10, 10), size=(k,1))
    w_1k = np.linspace(1, 10, k)[:, None]
    # w_1k = np.ones((k, 1)) * t0 # np.linspace(0.9, 1.1, k)[:, None]
    ctrl_1k2 = np.array(np.concatenate([v_1k, w_1k], axis=1)[None],
                        dtype=np.float32)

    trajectory = db.simulate_T(state_113, ctrl_1k2, T=k)
    state_1k3, _ = db.parse_trajectory(trajectory)
    if plot:
        fig = plt.figure()
        ax = fig.add_subplot(111)
        xs, ys, ts = state_1k3[0, :, 0], state_1k3[0, :, 1], state_1k3[0, :, 2]
        ax.plot(xs, ys, 'r--')
        ax.quiver(xs, ys, np.cos(ts), np.sin(ts))
        # plt.show()
        fig.savefig("./tests/dynamics/custom_dubins.png",
                    bbox_inches='tight',
                    pad_inches=0)
def visualize_coordinate_transform():
    """Visual sanity check that coordinate transforms
    are working. """
    fig, _, axs = utils.subplot2(plt, (2, 2), (8, 8), (.4, .4))
    axs = axs[::-1]

    n, k = 1, 30
    dt = .1
    dubins_car = DubinsV1(dt=dt)

    traj_egocentric = Trajectory(dt=dt, n=n, k=k, variable=True)
    traj_world = Trajectory(dt=dt, n=n, k=k, variable=True)

    # Form a trajectory in global frame
    # convert to egocentric and back
    start_pos_global_n12 = tf.constant([[[1.0, 1.0]]], dtype=tf.float32)
    start_heading_global_n11 = tf.constant([[[np.pi / 2.]]], dtype=tf.float32)
    start_config_global = SystemConfig(dt=dt, n=n, k=1, position_nk2=start_pos_global_n12,
                                       heading_nk1=start_heading_global_n11)

    start_n13 = tf.concat([start_pos_global_n12, start_heading_global_n11], axis=2)
    u_n12 = np.array([[[.01, .1]]], dtype=np.float32)
    u_nk2 = tf.constant(np.broadcast_to(u_n12, (n, k, 2)), dtype=tf.float32)
    trajectory_world = dubins_car.simulate_T(start_n13, u_nk2, T=k - 1)
    trajectory_world.render([axs[0]], batch_idx=0, freq=4, name='World')

    # Convert to egocentric
    dubins_car.to_egocentric_coordinates(start_config_global, trajectory_world, traj_egocentric)
    traj_egocentric.render([axs[1]], batch_idx=0, freq=4, name='Egocentric')

    dubins_car.to_world_coordinates(start_config_global, traj_egocentric, traj_world)
    traj_world.render([axs[2]], batch_idx=0, freq=4, name='World #2')
    plt.savefig('./tmp/coordinate_transform.png', bbox_inches='tight')
示例#4
0
def test_lqr1(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = p.n, 50
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    x_n13 = tf.constant(np.zeros((n, 1, x_dim)), dtype=tf.float32)
    v_1k = np.ones((k - 1, 1)) * .1
    w_1k = np.linspace(.5, .3, k - 1)[:, None]

    u_1k2 = tf.constant(np.concatenate([v_1k, w_1k], axis=1)[None],
                        dtype=tf.float32)
    u_nk2 = tf.zeros((n, k - 1, 2), dtype=tf.float32) + u_1k2
    trajectory_ref = db.simulate_T(x_n13, u_nk2, T=k)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    assert (np.abs(lqr_res['J_hist'][1][0] - .022867) < 1e-4)
    assert (np.abs(lqr_res['J_hist'][0][0] - 38.17334) < 1e-4)

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        heading_ref = trajectory_ref.heading_nk1()[0]
        heading_opt = trajectory_opt.heading_nk1()[0]
        fig = plt.figure()
        ax = fig.add_subplot(121)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.legend()

        # plt.show()
        fig.savefig('./tests/lqr/test_lqr1.png',
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        print('rerun test_lqr1 with visualize=True to visualize the test')
示例#5
0
def test_lqr0(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = 1, p.k
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    goal_x, goal_y = 4.0, 0.0
    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = tf.constant(np.tile(goal, (n, k, 1)))
    u_ref_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory_ref = db.assemble_trajectory(x_ref_nk3, u_ref_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    # Initiate a blank trajectory (all 0's)
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)
    cost = lqr_solver.evaluate_trajectory_cost(trajectory)
    expected_cost = .5 * goal_x**2 * k + .5 * goal_y**2 * k
    assert ((cost.numpy() == expected_cost).all())

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    J_opt = lqr_res['J_hist'][-1]
    assert ((J_opt.numpy() == 8.).all())
    assert (np.allclose(trajectory_opt.position_nk2()[:, 1:, 0], 4.0))

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.scatter(pos_ref[:, 0], pos_ref[:, 1])
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b--', label='opt')
        ax.legend()
        # plt.show()
        fig.savefig('./tests/lqr/test_lqr0.png',
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        print('rerun test_lqr0 with visualize=True to visualize the test')
示例#6
0
def test_coordinate_transform():
    n, k = 1, 30
    dt = .1
    p = create_params()
    dubins_car = DubinsV1(dt=dt, params=p.system_dynamics_params)
    ref_config = dubins_car.init_egocentric_robot_config(dt=dt, n=n)

    pos_nk2 = np.ones((n, k, 2), dtype=np.float32) * np.random.rand()
    traj_global = Trajectory(dt=dt, n=n, k=k, position_nk2=pos_nk2)
    traj_egocentric = Trajectory(dt=dt, n=n, k=k, variable=True)
    traj_global_new = Trajectory(dt=dt, n=n, k=k, variable=True)

    dubins_car.to_egocentric_coordinates(ref_config, traj_global,
                                         traj_egocentric)

    # Test 0 transform
    assert ((pos_nk2 == traj_egocentric.position_nk2()).all())

    ref_config_pos_112 = np.array([[[5.0, 5.0]]], dtype=np.float32)
    ref_config_pos_n12 = np.repeat(ref_config_pos_112, repeats=n, axis=0)
    ref_config = SystemConfig(dt=dt, n=n, k=1, position_nk2=ref_config_pos_n12)
    traj_egocentric = dubins_car.to_egocentric_coordinates(
        ref_config, traj_global, traj_egocentric)
    # Test translation
    assert ((pos_nk2 - 5.0 == traj_egocentric.position_nk2()).all())

    ref_config_heading_111 = np.array([[[3. * np.pi / 4.]]], dtype=np.float32)
    ref_config_heading_nk1 = np.repeat(ref_config_heading_111,
                                       repeats=n,
                                       axis=0)
    ref_config = SystemConfig(dt=dt,
                              n=n,
                              k=1,
                              position_nk2=ref_config_pos_n12,
                              heading_nk1=ref_config_heading_nk1)

    traj_egocentric = dubins_car.to_egocentric_coordinates(
        ref_config, traj_global, traj_egocentric)
    traj_global_new = dubins_car.to_world_coordinates(ref_config,
                                                      traj_egocentric,
                                                      traj_global_new)
    assert (np.allclose(traj_global.position_nk2(),
                        traj_global_new.position_nk2()))
示例#7
0
def test_lqr2(visualize=False):
    p = create_params()
    np.random.seed(seed=p.seed)
    n, k = 2, 50
    dt = p.dt

    db = DubinsV1(dt, params=p.system_dynamics_params.simulation_params)
    x_dim, u_dim = db._x_dim, db._u_dim

    x_n13 = tf.constant(np.zeros((n, 1, x_dim)), dtype=tf.float32)
    v_1k, w_1k = np.ones((k - 1, 1)) * .1, np.linspace(.5, .3, k - 1)[:, None]

    u_1k2 = tf.constant(np.concatenate([v_1k, w_1k], axis=1)[None],
                        dtype=tf.float32)
    u_nk2 = tf.zeros((n, k - 1, 2), dtype=tf.float32) + u_1k2
    trajectory_ref = db.simulate_T(x_n13, u_nk2, T=k)

    x_nk3, u_nk2 = db.parse_trajectory(trajectory_ref)

    # stack two different reference trajectories together
    # to verify that batched LQR works across the batch dim
    goal_x, goal_y = 4.0, 0.0
    goal = np.array([goal_x, goal_y, 0.], dtype=np.float32)
    x_ref_nk3 = tf.constant(np.tile(goal, (1, k, 1)))
    u_ref_nk2 = tf.constant(np.zeros((1, k, u_dim), dtype=np.float32))
    x_nk3 = tf.concat([x_ref_nk3, x_nk3[0:1]], axis=0)
    u_nk2 = tf.concat([u_ref_nk2, u_nk2[0:1]], axis=0)
    trajectory_ref = db.assemble_trajectory(x_nk3, u_nk2)

    cost_fn = QuadraticRegulatorRef(trajectory_ref, db, p)

    x_nk3 = tf.constant(np.zeros((n, k, x_dim), dtype=np.float32))
    u_nk2 = tf.constant(np.zeros((n, k, u_dim), dtype=np.float32))
    trajectory = db.assemble_trajectory(x_nk3, u_nk2)

    lqr_solver = LQRSolver(T=k - 1, dynamics=db, cost=cost_fn)

    start_config = db.init_egocentric_robot_config(dt=dt, n=n)
    lqr_res = lqr_solver.lqr(start_config, trajectory, verbose=False)
    trajectory_opt = lqr_res['trajectory_opt']
    assert (np.abs(lqr_res['J_hist'][1][0] - 8.0) < 1e-4)
    assert (np.abs(lqr_res['J_hist'][0][0] - 400.0) < 1e-4)

    if visualize:
        pos_ref = trajectory_ref.position_nk2()[0]
        pos_opt = trajectory_opt.position_nk2()[0]
        heading_ref = trajectory_ref.heading_nk1()[0]
        heading_opt = trajectory_opt.heading_nk1()[0]
        fig = plt.figure()
        ax = fig.add_subplot(121)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.set_title('Goal [4.0, 0.0]')
        ax.legend()

        pos_ref = trajectory_ref.position_nk2()[1]
        pos_opt = trajectory_opt.position_nk2()[1]
        heading_ref = trajectory_ref.heading_nk1()[1]
        heading_opt = trajectory_opt.heading_nk1()[1]
        ax = fig.add_subplot(122)
        ax.plot(pos_ref[:, 0], pos_ref[:, 1], 'r-', label='ref')
        ax.quiver(pos_ref[:, 0], pos_ref[:, 1], tf.cos(heading_ref),
                  tf.sin(heading_ref))
        ax.plot(pos_opt[:, 0], pos_opt[:, 1], 'b-', label='opt')
        ax.quiver(pos_opt[:, 0], pos_opt[:, 1], tf.cos(heading_opt),
                  tf.sin(heading_opt))
        ax.set_title('Nonlinear Traj')
        ax.legend()

        # plt.show()
        fig.savefig('./tests/lqr/test_lqr2.png',
                    bbox_inches='tight',
                    pad_inches=0)

    else:
        print('rerun test_lqr2 with visualize=True to visualize the test')
示例#8
0
def test_dubins_v1(visualize=False):
    np.random.seed(seed=1)
    dt = .1
    n, k = 5, 20
    x_dim, u_dim = 3, 2

    # Test that All Dimensions Work
    db = DubinsV1(dt, create_system_dynamics_params())

    state_nk3 = np.array(np.zeros((n, k, x_dim), dtype=np.float32))
    ctrl_nk2 = np.array(np.random.randn(n, k, u_dim), dtype=np.float32)

    trajectory = db.assemble_trajectory(state_nk3, ctrl_nk2)
    state_tp1_nk3 = db.simulate(state_nk3, ctrl_nk2)
    assert (state_tp1_nk3.shape == (n, k, x_dim))
    jac_x_nk33 = db.jac_x(trajectory)
    assert (jac_x_nk33.shape == (n, k, x_dim, x_dim))

    jac_u_nk32 = db.jac_u(trajectory)
    assert (jac_u_nk32.shape == (n, k, x_dim, u_dim))

    A, B, c = db.affine_factors(trajectory)

    # Test that computation is occurring correctly
    n, k = 2, 3
    ctrl = 1
    state_n13 = np.array(np.zeros((n, 1, x_dim)), dtype=np.float32)
    ctrl_nk2 = np.array(np.ones((n, k, u_dim)) * ctrl, dtype=np.float32)
    trajectory = db.simulate_T(state_n13, ctrl_nk2, T=k)
    state_nk3 = trajectory.position_and_heading_nk3()

    x1, x2, x3, x4 = (state_nk3[0, 0], state_nk3[0, 1], state_nk3[0, 2],
                      state_nk3[0, 3])
    assert ((x1 == np.zeros(3)).all())
    assert (np.allclose(x2, [.1, 0., .1]))
    assert (np.allclose(x3, [.1 + .1 * np.cos(.1), .1 * np.sin(.1), .2]))
    assert (np.allclose(x4, [.2975, .0298, .3], atol=1e-4))

    trajectory = db.assemble_trajectory(state_nk3[:, :-1], ctrl_nk2)
    A, B, c = db.affine_factors(trajectory)
    A0, A1, A2 = A[0, 0], A[0, 1], A[0, 2]
    A0_c = np.array([[1., 0., 0.], [0., 1., .1], [0., 0., 1.]])
    A1_c = np.array([[1., 0., -.1 * np.sin(.1)], [0., 1., .1 * np.cos(.1)],
                     [0., 0., 1.]])
    A2_c = np.array([[1., 0., -.1 * np.sin(.2)], [0., 1., .1 * np.cos(.2)],
                     [0., 0., 1.]])
    assert (np.allclose(A0, A0_c))
    assert (np.allclose(A1, A1_c))
    assert (np.allclose(A2, A2_c))

    B0, B1, B2 = B[0, 0], B[0, 1], B[0, 2]
    B0_c = np.array([[.1, 0.], [0., 0.], [0., .1]])
    B1_c = np.array([[.1 * np.cos(.1), 0.], [.1 * np.sin(.1), 0.], [0., .1]])
    B2_c = np.array([[.1 * np.cos(.2), 0.], [.1 * np.sin(.2), 0.], [0., .1]])
    assert (np.allclose(B0, B0_c))
    assert (np.allclose(B1, B1_c))
    assert (np.allclose(B2, B2_c))

    if visualize:
        # Visualize One Trajectory for Debugging
        k = 50
        state_113 = np.array(np.zeros((1, 1, x_dim)), dtype=np.float32)
        v_1k, w_1k = np.ones((k, 1)) * .2, np.linspace(1.1, .9, k)[:, None]
        ctrl_1k2 = np.array(np.concatenate([v_1k, w_1k], axis=1)[None],
                            dtype=np.float32)
        trajectory = db.simulate_T(state_113, ctrl_1k2, T=k)
        state_1k3, _ = db.parse_trajectory(trajectory)

        fig = plt.figure()
        ax = fig.add_subplot(111)
        xs, ys, ts = state_1k3[0, :, 0], state_1k3[0, :, 1], state_1k3[0, :, 2]
        ax.plot(xs, ys, 'r--')
        ax.quiver(xs, ys, np.cos(ts), np.sin(ts))
        # plt.show()
        fig.savefig("./tests/dynamics/test_dynamics1.png",
                    bbox_inches='tight',
                    pad_inches=0)