prioravg = np.array([]) priorwth = np.array([]) priorvals = np.array([prioravg,priorwth]) parlist_cat = np.append(fixlist, parlist) parvals_cat = np.append(fixvals,parvals) #print parlist_cat #print parvals_cat start = time.time() filedir = '/Users/nab/Desktop/Projects/ACTPol_Cluster_Like/' filename = args.chain_name #,'mockCat_v1' if args.testMock: print("Testing Mockcat Numbers") MC = lk.MockCatalog(iniFile,pardict,nemoOutputDir,noise_file,parvals,parlist,mass_grid_log=[mmin,15.7,0.01],z_grid=[0.1,2.01,0.1]) saveNum = [] for i in range(args.testMock): Nums = MC.test_Mockcat_Nums(mmin) saveNum = np.append(saveNum,Nums) if (np.mod(i,old_div(args.testMock,10)) == 0): print(".") #print saveNum f = open(filedir+filename+'.txt', "w") np.savetxt(f,saveNum) print('sample time',time.time() - start) sys.exit(0) else: check = os.path.isfile(filedir+filename+'.fits') if (check == False): MC = lk.MockCatalog(iniFile,pardict,nemoOutputDir,noise_file,parvals,parlist,mass_grid_log=[mmin,15.7,0.01],z_grid=[0.1,2.01,0.1])
priorwth = np.array([0.002, 0.014, 3.6, 0.11, 0.1]) # prioravg = np.array([0.0223,0.96,67.3,0.8,0.2]) # priorwth = np.array([0.0009,0.02,3.6,0.12,0.1]) priorvals = np.array([prioravg, priorwth]) if args.mockcat or args.randcat: parlist = [ 'omch2', 'ombh2', 'H0', 'As', 'ns', 'tau', 'massbias', 'yslope', 'scat' ] parvals = [0.1225, 0.0245, 70, 2.0e-09, 0.97, 0.06, 1.0, 0.08, 0.2] if args.mockcat: MC = lk.MockCatalog(iniFile, pardict, nemoOutputDir, noise_file, parvals, parlist, mass_grid_log=[13.6, 15.7, 0.01], z_grid=[0.1, 2.01, 0.1]) if args.randcat: MC = lk.MockCatalog( iniFile, pardict, nemoOutputDir, noise_file, parvals, parlist, mass_grid_log=[np.log10(2e14), np.log10(7e15), 0.01], z_grid=[0.1, 1.01, 0.1], randoms=True)