示例#1
0
  def testMainReadme(self):
    # Just check that the readme examples do not raise exceptions.
    # Create a random tensor of shape (3, 2, 2).
    a = t3f.random_tensor((3, 2, 2), tt_rank=3)
    norm = t3f.frobenius_norm(a)
    # Convert TT-tensor into a dense tensor for printing.
    a_full = t3f.full(a)
    # Run a tensorflow session to run the operations.
    with tf.Session() as sess:
      # Run the operations. Note that if you run these
      # two operations separetly (sess.run(a_full), sess.run(norm))
      # the result will be different, since sess.run will
      # generate a new random tensor a on each run because `a' is
      # an operation 'generate me a random tensor'.
      a_val, norm_val = sess.run([a_full, norm])
    a = t3f.random_tensor((3, 2, 2), tt_rank=3)
    b_dense = tf.random_normal((3, 2, 2))
    # Use TT-SVD on b_dense.
    b_tt = t3f.to_tt_tensor(b_dense, max_tt_rank=4)
    sum_round = t3f.round(t3f.add(a, b_tt), max_tt_rank=2)
    # Inner product (sum of products of all elements).
    a = t3f.random_tensor((3, 2, 2), tt_rank=3)
    b = t3f.random_tensor((3, 2, 2), tt_rank=4)
    inner_prod = t3f.flat_inner(a, b)
    A = t3f.random_matrix(((3, 2, 2), (2, 3, 3)), tt_rank=3)
    b = t3f.random_matrix(((2, 3, 3), None), tt_rank=3)
    # Matrix-by-vector
    matvec = t3f.matmul(A, b)

    # Matrix-by-dense matrix
    b_dense = tf.random_normal((18, 1))
    matvec2 = t3f.matmul(A, b_dense)
示例#2
0
 def call(self, x):
     if self.bias:
         h = t3f.matmul(x, self.W) + self.b
     else:
         h = t3f.matmul(x, self.W)
     if self.activation is not None:
         if self.activation in activations:
             h = Activation(self.activation)(h)
         else:
             raise ValueError('Unknown activation "%s", only %s and None '
                              'are supported' %
                              (self.activation, activations))
     return h
示例#3
0
文件: nn.py 项目: Dean-Go-kr/QTTNet
 def call(self, x):
     res = t3f.matmul(x, self.matrix)
     if self.use_bias:
         res += self.b
     if self.activation is not None:
         res = Activation(self.activation)(res)
     return res
示例#4
0
def LQ(niters, batch_size, lr, rank, X_data, Y_data, model):
    tf.reset_default_graph()

    sess = tf.Session()
    losses = []
    if model == 'riemt3f':
        X = tf.placeholder(tf.float32, [None, dx])
        Y = tf.placeholder(tf.float32, [None, dy])
        #### T3F RGD ####
        print('Starting T3F RGD...')
        # using riemannian projection implemented by t3f, compute a separate update
        # this requires projection/rounding which should be computationally intensive
        initializer = t3f.glorot_initializer([nx, ny], tt_rank=rank)
        W_t3f_rgd = t3f.get_variable('W_t3f_rgd', initializer=initializer)

        cost_t3f_rgd = tf.reduce_mean(0.5 *
                                      tf.square(Y - t3f.matmul(X, W_t3f_rgd)))

        # least squares derivative
        grad = t3f.to_tt_matrix(tf.matmul(
            tf.transpose(Y - t3f.matmul(X, W_t3f_rgd)), -1 * X),
                                shape=[nx, ny],
                                max_tt_rank=rank)
        riemannian_grad = t3f.riemannian.project(grad, W_t3f_rgd)
        # norm_t3f_rgd = t3f.frobenius_norm(riemannian_grad, epsilon=1e-10)

        ### HARD CODED SLOWER RATE HERE BC OF DIVERGENCE
        train_step = t3f.assign(
            W_t3f_rgd,
            t3f.round(W_t3f_rgd - 0.1 * lr * riemannian_grad,
                      max_tt_rank=rank))

        sess.run(tf.global_variables_initializer())
        nparams = np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ])
        print('Total number of parameters: ', nparams)

        t0 = time.time()
        # while(sess.run(tf.less(mingradnorm, norm_t3f_rgd), feed_dict={X: X_data, Y: Y_data})):
        i = 0
        while (i <= niters):
            i = i + 1
            x_mb, y_mb = next_batch(X_data, Y_data, batch_size)
            _, tmp = sess.run([train_step.op, cost_t3f_rgd],
                              feed_dict={
                                  X: x_mb,
                                  Y: y_mb
                              })
            losses.append(tmp)
            # print(sess.run(norm_t3f_rgd, feed_dict={X: X_data, Y: Y_data}))
            print(i, tmp)
            if tmp < mincost or np.isnan(tmp):
                break
        t1 = time.time()
        myT = t1 - t0

    elif model == 'ott':
        X = tf.placeholder(tf.float32, [None, dx])
        Y = tf.placeholder(tf.float32, [None, dy])
        # #### Own EOTT GD ####
        print('Starting OTT...')
        W_EOTT_gd = aOTTtfVariable(shape=[ny, nx], r=rank)

        cost_eott_gd = tf.reduce_mean(
            0.5 * tf.square(Y - tf.transpose(W_EOTT_gd.mult(tf.transpose(X)))))

        opt = tf.train.GradientDescentOptimizer(learning_rate=1.0)
        # Manifold Update
        gW1 = opt.compute_gradients(cost_eott_gd, W_EOTT_gd.getQ())
        man_update = [v.assign(gradStep(X=v, G=g, lr=lr)) for g, v in gW1]

        t0 = time.time()
        sess.run(tf.global_variables_initializer())
        nparams = np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ])
        print('Total number of parameters: ', nparams)

        wopt = sess.run(W_EOTT_gd.getQ())
        i = 0
        while (i <= niters):
            i = i + 1
            x_mb, y_mb = next_batch(X_data, Y_data, batch_size)
            _, tmp = sess.run([man_update, cost_eott_gd],
                              feed_dict={
                                  X: x_mb,
                                  Y: y_mb
                              })
            # _, tmp = sess.run([Eucupdate, cost_eott_gd], feed_dict={X: x_mb, Y: y_mb})
            losses.append(tmp)
            print(i, tmp)
            if tmp < mincost or np.isnan(tmp):
                break
        t1 = time.time()
        myT = t1 - t0

    else:
        print('what model is that? unknown')
        return

    t1 = time.time()
    print('Took seconds:', myT)

    return myT, losses
示例#5
0
one_matrix = t3f.get_variable('one_matrix', initializer=matrices[0])
matrices = t3f.get_variable('matrices', initializer=matrices)
vecs = t3f.random_matrix_batch((shape, None), 10, batch_size=100)
vecs = t3f.cast(vecs, tf.float64)
one_vec = t3f.get_variable('one_vec', initializer=vecs[0])
vecs = t3f.get_variable('vecs', initializer=vecs)
vecs100 = t3f.random_matrix_batch((shape, None), 100, batch_size=100)
vecs100 = t3f.cast(vecs100, tf.float64)
one_vec100 = t3f.get_variable('one_vec100', initializer=vecs100[0])
vecs100 = t3f.get_variable('vecs100', initializer=vecs100)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(device_lib.list_local_devices())
logs = {}

matvec_op = t3f.matmul(one_matrix, one_vec).op
# Warmup.
timeit.timeit(lambda: sess.run(matvec_op), number=10)
matvec_time = timeit.timeit(lambda: sess.run(matvec_op), number=1000) / 1000
print('Multiplying %s by %s takes %f seconds.' %
      (one_matrix, one_vec, matvec_time))
logs['matvec_time'] = matvec_time

batch_matvec_op = t3f.matmul(one_matrix, vecs).op
batch_matvec_time = timeit.timeit(lambda: sess.run(batch_matvec_op),
                                  number=100) / 100
print('Multiplying %s by %s takes %f seconds.' %
      (one_matrix, vecs, batch_matvec_time))
logs['batch_matvec_time'] = batch_matvec_time

matmul_op = t3f.matmul(one_matrix, one_matrix).op
示例#6
0
 def matmul(self, input_data):
     activation = t3f.matmul(input_data, self.weights)
     if self.use_bias:
         activation = activation + self.bias
     return activation