def build_optim(model, checkpoint): if opt.train_from: print('Loading optimizer from checkpoint.') optim = checkpoint['optim'] optim.optimizer.load_state_dict( checkpoint['optim'].optimizer.state_dict()) else: # what members of opt does Optim need? optim = table.Optim( opt.optim, opt.learning_rate, opt.alpha, opt.max_grad_norm, lr_decay=opt.learning_rate_decay, start_decay_at=opt.start_decay_at, opt=opt ) optim.set_parameters(model.parameters()) return optim
def build_optimizer(model, checkpoint=None): if args.train_from: assert checkpoint is not None logger.info(' * loading optimizer from checkpoint') optim = checkpoint['optim'] optim.optimizer.load_state_dict(checkpoint['optim'].optimizer.state_dict()) else: optim = table.Optim( method=args.optim, lr=args.learning_rate, alpha=args.alpha, max_grad_norm=args.max_grad_norm, lr_decay=args.learning_rate_decay, start_decay_at=args.start_decay_at, opt=args ) optim.set_parameters(model.parameters()) return optim