示例#1
0
    def score_history(self) -> Tuple[List[str], np.ndarray]:
        """
        Compute the history of the scores for every agent.

        To do so, we need to simulate the game again, by settling transactions one by one
        and get the scores after every transaction.

        :return: a matrix of shape (nb_transactions + 1, nb_agents), where every row i contains the scores
                 after transaction i (i=0 is a row with the initial scores.)
        """
        nb_transactions = len(self.game.transactions)
        nb_agents = self.game.configuration.nb_agents
        result = np.zeros((nb_transactions + 1, nb_agents))

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial scores
        scores_dict = temp_game.get_scores()
        result[0, :] = list(scores_dict.values())
        keys = list(scores_dict.keys())

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            scores_dict = temp_game.get_scores()
            result[idx + 1, :] = list(scores_dict.values())

        return keys, result
示例#2
0
    def eq_vs_mean_price(self) -> Tuple[List[str], np.ndarray]:
        """
        Compute the mean price of each good and display it together with the equilibrium price.

        :return: a matrix of shape (2, nb_goods), where every column i contains the prices of the good.
        """
        nb_transactions = len(self.game.transactions)
        eq_prices = self.game.initialization.eq_prices
        nb_goods = len(eq_prices)

        result = np.zeros((2, nb_goods), dtype=np.float32)
        result[0, :] = np.asarray(eq_prices, dtype=np.float32)

        prices_by_transactions = np.zeros((nb_transactions + 1, nb_goods),
                                          dtype=np.float32)

        # initial prices
        prices_by_transactions[0, :] = np.asarray(0, dtype=np.float32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            prices_by_transactions[idx + 1, :] = np.asarray(
                temp_game.get_prices(), dtype=np.float32)

        denominator = (prices_by_transactions != 0).sum(0)
        result[1, :] = np.true_divide(prices_by_transactions.sum(0),
                                      denominator)
        result[1, denominator == 0] = 0

        result = np.transpose(result)

        return self.game.configuration.good_names, result
示例#3
0
    def holdings_history(self):
        """
        Compute the history of holdings.

        :return: a matrix of shape (nb_transactions, nb_agents, nb_goods). i=0 is the initial endowment matrix.
        """
        nb_transactions = len(self.game.transactions)
        nb_agents = self.game.configuration.nb_agents
        nb_goods = self.game.configuration.nb_goods
        result = np.zeros((nb_transactions + 1, nb_agents, nb_goods),
                          dtype=np.int32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial holdings
        result[0, :] = np.asarray(temp_game.initialization.endowments,
                                  dtype=np.int32)

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            result[idx + 1, :] = np.asarray(temp_game.get_holdings_matrix(),
                                            dtype=np.int32)

        return result
示例#4
0
    def test_to_dict(self):
        """Test that conversion into dict works as expected."""
        version_id = "1"
        nb_agents = 3
        nb_goods = 3
        tx_fee = 1.0
        agent_pbk_to_name = {
            "tac_agent_0_pbk": "tac_agent_0",
            "tac_agent_1_pbk": "tac_agent_1",
            "tac_agent_2_pbk": "tac_agent_2",
        }
        good_pbk_to_name = {
            "tac_good_0_pbk": "tac_good_0",
            "tac_good_1_pbk": "tac_good_1",
            "tac_good_2_pbk": "tac_good_2",
        }
        money_amounts = [20, 20, 20]
        endowments = [[1, 1, 1], [2, 1, 1], [1, 1, 2]]
        utility_params = [[20.0, 40.0, 40.0], [10.0, 50.0, 40.0],
                          [40.0, 30.0, 30.0]]
        eq_prices = [1.0, 1.0, 4.0]
        eq_good_holdings = [[1.0, 1.0, 4.0], [1.0, 5.0, 1.0], [6.0, 1.0, 2.0]]
        eq_money_holdings = [20.0, 20.0, 20.0]

        game_configuration = GameConfiguration(version_id, nb_agents, nb_goods,
                                               tx_fee, agent_pbk_to_name,
                                               good_pbk_to_name)
        game_initialization = GameInitialization(
            money_amounts,
            endowments,
            utility_params,
            eq_prices,
            eq_good_holdings,
            eq_money_holdings,
        )

        game = Game(game_configuration, game_initialization)

        tx_id = "some_tx_id"
        sender_pbk = "tac_agent_0_pbk"
        counterparty_pbk = "tac_agent_1_pbk"
        transaction_1 = Transaction(tx_id, True, counterparty_pbk, 10,
                                    {"tac_good_0_pbk": 1}, sender_pbk)
        transaction_2 = Transaction(tx_id, False, counterparty_pbk, 10,
                                    {"tac_good_0_pbk": 1}, sender_pbk)
        game.settle_transaction(transaction_1)
        game.settle_transaction(transaction_2)

        actual_game_dict = game.to_dict()
        expected_game_dict = {
            "configuration": game_configuration.to_dict(),
            "initialization": game_initialization.to_dict(),
            "transactions": [transaction_1.to_dict(),
                             transaction_2.to_dict()],
        }

        assert actual_game_dict == expected_game_dict
示例#5
0
    def adjusted_score(self) -> Tuple[List[str], np.ndarray]:
        """
        Compute the adjusted score of each agent.

        :return: a matrix of shape (1, nb_agents), where every column i contains the score of the agent.
        """
        nb_agents = self.game.configuration.nb_agents
        current_scores = np.zeros((1, nb_agents), dtype=np.float32)

        eq_agent_states = dict((
            agent_pbk,
            AgentState(
                self.game.initialization.eq_money_holdings[i],
                [int(h) for h in self.game.initialization.eq_good_holdings[i]],
                self.game.initialization.utility_params[i],
            ),
        ) for agent_pbk, i in zip(
            self.game.configuration.agent_pbks,
            range(self.game.configuration.nb_agents),
        ))  # type: Dict[str, AgentState]

        result = np.zeros((1, nb_agents), dtype=np.float32)

        eq_scores = np.zeros((1, nb_agents), dtype=np.float32)
        eq_scores[0, :] = [
            eq_agent_state.get_score()
            for eq_agent_state in eq_agent_states.values()
        ]

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial scores
        initial_scores = np.zeros((1, nb_agents), dtype=np.float32)
        scores_dict = temp_game.get_scores()
        initial_scores[0, :] = list(scores_dict.values())
        keys = list(scores_dict.keys())
        current_scores = np.zeros((1, nb_agents), dtype=np.float32)
        current_scores[0, :] = initial_scores[0, :]

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            scores_dict = temp_game.get_scores()
            current_scores[0, :] = list(scores_dict.values())

        result[0, :] = np.divide(
            np.subtract(current_scores, initial_scores),
            np.subtract(eq_scores, initial_scores),
        )
        result = np.transpose(result)

        return keys, result
示例#6
0
    def tx_counts(self) -> Dict[str, Dict[str, int]]:
        """Get the tx counts."""
        agent_pbk_to_name = self.game.configuration.agent_pbk_to_name
        result = {agent_name: 0 for agent_name in agent_pbk_to_name.values()}
        results = {"seller": result.copy(), "buyer": result.copy()}

        temp_game = Game(self.game.configuration, self.game.initialization)

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            results["seller"][agent_pbk_to_name[tx.seller_pbk]] += 1
            results["buyer"][agent_pbk_to_name[tx.buyer_pbk]] += 1

        return results
示例#7
0
    def test_baseline_agent_score_does_not_decrease(self):
        """Test that all the baseline agent scores do not decrease after each transaction."""
        finished_game = self.tac_controller.game_handler.current_game
        game_configuration = finished_game.configuration
        game_initialization = finished_game.initialization
        game = Game(game_configuration, game_initialization)

        scores_dict = game.get_scores()
        current_score = np.asarray(list(scores_dict.values()))
        next_scores = None
        for tx in finished_game.transactions:
            game.settle_transaction(tx)
            scores_dict = game.get_scores()
            next_scores = np.asarray(list(scores_dict.values()))
            assert not (next_scores < current_score).any()
            current_score = next_scores
示例#8
0
    def price_history(self) -> np.ndarray:
        """Get the price history."""
        nb_transactions = len(self.game.transactions)
        nb_goods = self.game.configuration.nb_goods
        result = np.zeros((nb_transactions + 1, nb_goods), dtype=np.float32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial prices
        result[0, :] = np.asarray(0, dtype=np.float32)

        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            result[idx + 1, :] = np.asarray(temp_game.get_prices(),
                                            dtype=np.float32)

        return result
示例#9
0
    def tx_prices(self) -> Dict[str, List[float]]:
        """Get the tx counts."""
        agent_pbk_to_name = self.game.configuration.agent_pbk_to_name
        results = {
            agent_name: []
            for agent_name in agent_pbk_to_name.values()
        }  # type: Dict[str, List[float]]

        temp_game = Game(self.game.configuration, self.game.initialization)

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            results[agent_pbk_to_name[tx.seller_pbk]].append(tx.amount)

        return results
示例#10
0
    def balance_history(self) -> Tuple[List[str], np.ndarray]:
        """Get the balance history."""
        nb_transactions = len(self.game.transactions)
        nb_agents = self.game.configuration.nb_agents
        result = np.zeros((nb_transactions + 1, nb_agents), dtype=np.int32)

        temp_game = Game(self.game.configuration, self.game.initialization)

        # initial balances
        balances_dict = temp_game.get_balances()
        result[0, :] = np.asarray(list(balances_dict.values()), dtype=np.int32)
        keys = list(balances_dict.keys())

        # compute the partial scores for every agent after every transaction
        # (remember that indexes of the transaction start from one, because index 0 is reserved for the initial scores)
        for idx, tx in enumerate(self.game.transactions):
            temp_game.settle_transaction(tx)
            balances_dict = temp_game.get_balances()
            result[idx + 1, :] = np.asarray(list(balances_dict.values()),
                                            dtype=np.int32)

        return keys, result