def train_kidney():
    
    tbn = get.kidney_full()

    e1 = 'L'
    e2 = 'T'
    q  = 'S'
    size = 1024
    
    # simulate
    TAC = tac.TAC(tbn,(e1,e2),q,trainable=False)
    evidence, marginals = TAC.simulate(size,'grid')
    
    # visualize simulated data
    visualize.plot3D(evidence,marginals,e1,e2,q)
    
    # bn
    for tbn in (get.kidney_tbn(),get.kidney_bn()):    
        # learn
        TAC = tac.TAC(tbn,(e1,e2),q,trainable=True)
        TAC.fit(evidence,marginals,loss_type='CE',metric_type='CE')
        predictions = TAC.evaluate(evidence)
    
        # visualize learned tac
        visualize.plot3D(evidence,predictions,e1,e2,q)
示例#2
0
def __VE_vs_TAC(bn,inputs,output,evidence_size,hard_evidence=False,tbn=None):
    if tbn==None: tbn = bn
    assert not bn._for_inference
    assert not tbn._for_inference
    
    hinputs  = inputs if hard_evidence else []
    cards    = tuple(bn.node(input).card for input in inputs)
    evidence = data.evd_random(evidence_size,cards,hard_evidence)
    TAC      = tac.TAC(tbn,inputs,output,hard_inputs=hinputs,trainable=False)

    tac_posteriors = TAC.evaluate(evidence,batch_size=16) # 16 to reduce memory  
    del TAC # no longer needed (save memory)
    ve_posteriors  = VE.posteriors(bn,inputs,output,evidence)
        
    close = np.isclose(ve_posteriors,tac_posteriors) # array
    ok    = np.all(close) # boolean
    if not ok:      
        mismatches = np.logical_not(close)
        print(f'\nMismatch between VE and TAC on {tbn.name}:')
        print('  VE \n  ',ve_posteriors[mismatches])
        print('  TAC\n  ',tac_posteriors[mismatches])
        print('\n  VE \n  ',ve_posteriors)
        print('  TAC\n  ',tac_posteriors)
        print('\n***Ouch!!!!\n')
        quit()
    else:
        print('.',end='',flush=True)
def train(size,output,data_size,testing,use_bk,tie_parameters):
    circuit_type = 'TAC' if testing else 'AC'
    u.show(f'\n===Training {circuit_type} for rectangle {output} in {size}x{size} images, use_bk {use_bk}, tie {tie_parameters}')

    # get training and testing data (labels are one-hot)
    t_evidence, t_labels = rdata.get(size,output,noisy_image_count=size,noise_count=size)
    v_evidence, v_labels = rdata.get(size,output,noisy_image_count=2*size,noise_count=2*size)
    
    # get model
    bn, inputs = rmodel.get(size,output,testing,use_bk,tie_parameters)
    
    # compile model to circuit
    circuit = tac.TAC(bn,inputs,output,trainable=True,profile=False)
    
    # use a random subset of the generated data
    t_percentage = data_size / len(t_labels)
    v_percentage = max(1000,data_size)/len(v_labels) # no less than 1000
    t_evidence, t_labels = data.random_subset(t_evidence,t_labels,t_percentage)
    v_evidence, v_labels = data.random_subset(v_evidence,v_labels,v_percentage)
  
    # train AC
    circuit.fit(t_evidence,t_labels,loss_type='CE',metric_type='CA')
    
    # compute accuracy
    accuracy = circuit.metric(v_evidence,v_labels,metric_type='CA')
    u.show(f'\n{circuit_type} accuracy {100*accuracy:.2f}')
    
    return (100*accuracy, circuit)
def eval(f, size, digits, testing):
    circuit_type = 'TAC' if testing else 'AC'
    # get data (ground truth)
    evidence, marginals = ddata.get(size, digits)
    ecount = len(marginals)  # number of examples

    u.echo(f, f'\n==digits {size}x{size} images: {ecount} total')

    # get model
    net, inputs, output = dmodel.get(size,
                                     digits,
                                     testing,
                                     use_bk=True,
                                     tie_parameters=False,
                                     remove_common=False)

    # compile model
    s_time = time.time()
    u.echo(f, f'\ncompiling {circuit_type}:', end='')
    AC = tac.TAC(net, inputs, output, trainable=False, profile=False)
    t = time.time() - s_time
    u.echo(f, f' {t:.1f} sec')
    u.echo(
        f,
        f'  {circuit_type} size {AC.size:,}\n  (sep) binary rank {AC.binary_rank:.1f}, rank {AC.rank}'
    )

    # evaluate AC on evidence to get predictions
    u.echo(f, f'evaluating {circuit_type}:', end='', flush=True)
    predictions, t1, batch_size = AC.evaluate(evidence, report_time=True)
    u.echo(f, f'  batch_size {batch_size}')
    u.echo(f, f'  {t1:.2f} sec, {1000*t1/ecount:.1f} ms per example')
def validate(size,output,testing,elm_method='minfill',elm_wait=30):
    
    circuit_type = 'TAC' if testing else 'AC'
    
    # get data (ground truth)
    evidence, labels = rdata.get(size,output)
    
    u.show(f'\n===Checking {circuit_type} for rectangle {output} in {size}x{size} images: {len(labels)} total')
    
    # get model
    bn, inputs = rmodel.get(size,output,testing=testing,use_bk=True,tie_parameters=False)
    
    # compile model
    AC = tac.TAC(bn,inputs,output,trainable=False,profile=False,
            elm_method=elm_method,elm_wait=elm_wait)

    # evaluate TAC on evidence to get predictions
    predictions = AC.evaluate(evidence)

    # verify that predictions match one_hot_marginals
    if u.equal(predictions,labels): 
        u.show('\n===All good!')
    else:
        u.show('***bumper!!!')
        quit()
def __simulate_fit(tbn,e1,e2,q):
    size = 1024

    # simulate
    TAC = tac.TAC(tbn,(e1,e2),q,trainable=False)

    evidence, marginals = TAC.simulate(size,'grid')
    
    # visualize simulated data
    visualize.plot3D(evidence,marginals,e1,e2,q)
    
    # learn
    TAC = tac.TAC(tbn,(e1,e2),q,trainable=True)
    TAC.fit(evidence,marginals,loss_type='MSE',metric_type='MSE')
    predictions = TAC.evaluate(evidence)
    
    # visualize learned tac
    visualize.plot3D(evidence,predictions,e1,e2,q)
示例#7
0
def __posterior_time(f,bn,inputs,output,bsize,min_ac,max_ac,counter):
    s_time = time.perf_counter()
    AC = tac.TAC(bn,inputs,output)
    t = time.perf_counter()-s_time
    
    if AC.size < min_ac*1000000 or AC.size > max_ac*1000000: 
        return None
    
    u.echo(f,f'\n== {counter} ==\nTensor AC:',end='')
    u.echo(f,f' {t:.1f} sec')
    u.echo(f,f'  size {AC.size:,}, max binary rank {AC.binary_rank:0.1f}')
    
    # get evidence
    cards          = tuple(bn.node(input).card for input in inputs)
    evidence       = data.evd_random(bsize,cards)
    
    # evaluate AC as tf graph with batch
    u.echo(f,f'(tf full) eval:',end='',flush=True)
    tac_posteriors, t_AC, b_AC = AC.evaluate(evidence,report_time=True)    
    u.echo(f,f' {t_AC:.2f} sec'
             f'\n  {1000*t_AC/bsize:.0f} ms per example, used batch size {b_AC}'
             f'\n  {1000*t_AC/bsize/(AC.size/1000000):.0f} ms per 1M nodes (one example)')
   
    # check classical AC and numpy
    AC_size  = AC.size
    AC_brank = AC.binary_rank
    opsgrapy = AC.ops_graph
    del AC # no longer needed

    u.echo(f,'\nScalar AC:',end='')
    s_time = time.perf_counter()
    SAC = verify.AC.ScalarAC(opsgrapy)
    t = time.perf_counter()-s_time
    u.echo(f,f' {t:.1f} sec')
    u.echo(f,f'  size {SAC.size:,}')
    u.echo(f,f'  {SAC.size/AC_size:.2f} scalar ac/tensor ac')

    def v(eval_func,type):
        u.echo(f,f'({type}) eval:',end='',flush=True)
        t_SAC, b_SAC = eval_func(evidence,tac_posteriors)
        u.echo(f,f' {t_SAC:.2f} sec'
                 f'\n  {1000*t_SAC/bsize:.0f} ms per example, used batch size {b_SAC}'
                 f'\n  {t_SAC/t_AC:.2f} {type}/ac ')
        return t_SAC, b_SAC

    t_numpy, b_numpy = v(SAC.verify_numpy,'numpy batch')
#    t_tf, b_tf    = v(SAC.verify_tf,'tf batch')
    t_tf, b_tf    = 0, 0
#    t_array, b_array = v(SAC.verify_array,'array')
    t_array, b_array = 0, 0
    
    return (AC_size, AC_brank, SAC.size, t_AC, t_numpy, t_tf, t_array, b_AC, b_numpy, b_tf, b_array)
 def addScope(self, name, scope_type):
     global ScopeList, currentScope
     new_scope = {
             "name"       : str(name),
             "parent"     : ScopeList[currentScope]["name"],
             "table"      : dict(),
             "scope_type" : str(scope_type),
             "tac"        : tac.TAC(str(name),ScopeList[currentScope]["tac"].nextquad),
             "offset"     : ScopeList[currentScope]["offset"],
             }
     ScopeList[str(name)] =  new_scope
     #new_scope["tac"].startquad = ScopeList[currentScope]["tac"].nextquad
     currentScope = str(name)
     SymTab()
def train(size,
          digits,
          data_size,
          testing,
          use_bk,
          tie_parameters,
          remove_common=False):
    assert size >= 7
    assert all(d in range(10) for d in digits)

    circuit_type = 'TAC' if testing else 'AC'
    u.show(
        f'\n===Training {circuit_type} for digits {digits} in {size}x{size} images, use_bk {use_bk}, tie {tie_parameters}'
    )

    # get model
    net, inputs, output = dmodel.get(size, digits, testing, use_bk,
                                     tie_parameters, remove_common)

    # get data (ground truth)
    t_evidence, t_labels = ddata.get(size,
                                     digits,
                                     noisy_image_count=100,
                                     noise_count=size)
    v_evidence, v_labels = ddata.get(size,
                                     digits,
                                     noisy_image_count=200,
                                     noise_count=size)

    # compile model into circuit
    circuit = tac.TAC(net, inputs, output, trainable=True, profile=False)

    # get random subset of dats
    t_percentage = data_size / len(t_labels)
    v_percentage = max(1000, data_size) / len(v_labels)  # no less than 1000
    t_evidence, t_labels = data.random_subset(t_evidence, t_labels,
                                              t_percentage)
    v_evidence, v_labels = data.random_subset(v_evidence, v_labels,
                                              v_percentage)

    # fit circuit
    circuit.fit(t_evidence, t_labels, loss_type='CE', metric_type='CA')

    # compute accuracy
    accuracy = circuit.metric(v_evidence, v_labels, metric_type='CA')
    u.show(f'\n{circuit_type} accuracy {100*accuracy:.2f}')
def train_all(size,output,tries,data_sizes,testing,use_bk,tie_parameters,batch_size):
    start_time = time.time()
    
    fname = paths.exp / u.time_stamp(f'train_rect_{size}_{output}_{tries}_{testing}_{use_bk}_{tie_parameters}','txt')
    f     = open(fname,'w+')
    
    u.echo(f,f'\nrectangle {size} x {size}, output {output}, data_sizes {data_sizes}, testing {testing}, use_bk {use_bk}, tie {tie_parameters}\n')
    u.echo(f,f'fixed batch size {batch_size}')
    u.echo(f,'output logged into logs/exp/')
        
    def get_data(data_size):
        # full data
        t_evidence, t_labels = rdata.get(size,output,noisy_image_count=size,noise_count=size)
        v_evidence, v_labels = rdata.get(size,output,noisy_image_count=2*size,noise_count=2*size)
        # random subset
        t_percentage = data_size / len(t_labels)
        v_percentage = max(1000,data_size)/len(v_labels) # no less than 1000
        t_evidence, t_labels = data.random_subset(t_evidence,t_labels,t_percentage)
        v_evidence, v_labels = data.random_subset(v_evidence,v_labels,v_percentage)
        return t_evidence, t_labels, v_evidence, v_labels
    
    # get model
    net, inputs = rmodel.get(size,output,testing,use_bk,tie_parameters)
    # compile model into circuit
    circuit = tac.TAC(net,inputs,output,trainable=True,profile=False)
    u.echo(f,f'circuit size {circuit.size:,}, paramater count {circuit.parameter_count}\n')
    
    for data_size, count in zip(data_sizes,tries):
        u.echo(f,f'==data size {data_size}')
        t_evidence, t_labels, v_evidence, v_labels = get_data(data_size)
        u.echo(f,f'  train {len(t_labels)}, test {len(v_labels)}')
        u.echo(f,f'  accuracy ({count}):',end='',flush=True)
        sample = []
        for i in range(count):
            circuit.fit(t_evidence,t_labels,loss_type='CE',metric_type='CA',batch_size=batch_size)
            acc = 100*circuit.metric(v_evidence,v_labels,metric_type='CA')
            sample.append(acc)
            u.echo(f,f' {acc:.2f}',end='',flush=True)
        u.echo(f,f'\naccuracy mean {s.mean(sample):.2f}, std {s.stdev(sample):.2f}\n')
    
    all_time = time.time() - start_time
    u.echo(f,f'Total Time: {all_time:.3f} sec') 
    f.close()
def validate(size, digits, testing, elm_method='minfill', elm_wait=30):
    assert size >= 7
    assert all(d in range(10) for d in digits)

    # get data (ground truth)
    evidence, labels = ddata.get(size, digits)
    data_size = len(labels)

    circuit_type = 'TAC' if testing else 'AC'
    u.show(
        f'\n===Checking {circuit_type} for digits {digits} in {size}x{size} images: {data_size} total'
    )

    # get model
    net, inputs, output = dmodel.get(size,
                                     digits,
                                     testing,
                                     use_bk=True,
                                     tie_parameters=False,
                                     remove_common=False)

    # compile model into circuit
    circuit = tac.TAC(net,
                      inputs,
                      output,
                      trainable=False,
                      profile=False,
                      elm_method=elm_method,
                      elm_wait=elm_wait)

    # evaluate circuit on evidence to get predictions
    predictions = circuit.evaluate(evidence)

    # verify that predictions match labels
    if u.equal(predictions, labels):
        u.show('\n===All good!\n')
    else:
        u.show('***bumper!!!')
        quit()
示例#12
0
def validateThirdOrderHMM(size, card, num_examples=10):
    # validate AC of HMM model by running query pr(X_t,Y[1:t]) compared to the forward algorithm
    transition = np.random.rand(card, card, card, card)
    transition_sum = np.sum(transition, axis=-1, keepdims=True)
    transition = transition / transition_sum
    emission = np.random.rand(card, card)
    emission_sum = np.sum(emission, axis=1, keepdims=True)
    emission = emission / emission_sum
    # generate random transition and emission probabilities
    bn = hmm.getNthOrderHMM(size,
                            card,
                            3,
                            param=True,
                            transition=transition,
                            emission=emission)
    # define an hmm model with these parameters
    logging("Start testing third order HMM of length {}".format(size))
    inputs = ['e_' + str(i) for i in range(size - 1)]
    output = 'h_' + str(size - 1)
    ac = tac.TAC(bn, inputs, output, trainable=False)
    # compile an ac that computes pr(X_T+1, Y[1:T])
    evidence_ac, evidence_dp = generate_hard_evidence(size - 1, 1)
    labels_ac = ac.evaluate(evidence_ac)
    logging("ac labels: %s" % (labels_ac))
    labels_dp = []
    for evid in evidence_dp:
        label = hmm.predictThirdOrder(size, evid, transition, emission)
        labels_dp.append(label)
    labels_dp = np.stack(labels_dp)
    logging("forward labels: %s" % (labels_dp))
    if u.equal(labels_ac, labels_dp, tolerance=True):
        logging("Successfully validate third order HMM of length {}\n".format(
            size))
    else:
        logging(
            "Inconsistence queries for third order HMM of length {}\n".format(
                size))
def train_fn2(size,card):
    
    functions = [
#        lambda x,y: .7,
#        lambda x,y: x,
        lambda x,y: 0.5*math.exp(-5*(x-.5)**2-5*(y-.5)**2),
        lambda x,y: .5 + .5 * math.sin(2*math.pi*x),
        lambda x,y: 1.0/(1+math.exp(-32*(y-.5))),
        lambda x,y: math.exp(math.sin(math.pi*(x+y))-1),
        lambda x,y:  (1-x)*(1-x)*(1-x)*y*y*y,
        lambda x,y: math.sin(math.pi*(1-x)*(1-y)),
        lambda x,y: math.sin((math.pi/2)*(2-x-y)),
        lambda x,y: .5*x*y*(x+y)]
    
    tbn, e1, e2, q = get.fn2_chain(size,card)
    TAC = tac.TAC(tbn,[e1,e2],q,trainable=True,profile=False)
    
    for fn in functions:
        evidence, marginals = data.simulate_fn2(fn,1024)
        visualize.plot3D(evidence,marginals,e1,e2,q)
        
        TAC.fit(evidence,marginals,loss_type='CE',metric_type='CE')
        predictions = TAC.evaluate(evidence)
        visualize.plot3D(evidence,predictions,e1,e2,q)
import pprint, copy
import csv
import tac

### Scopes ###

global ScopeList, currentScope, AttrList,Error
Error = False
ScopeList = { "NULL" : None, "global" : {"name":"global", "parent" : "NULL", "scope_type" : "global", "tac" : tac.TAC("global",0), "offset" : 0 }, }
currentScope = "global"
AttrList = ['name','type', 'star', 'id_type', 'specifier', 'value', 'is_defined', 'order',  'num', 'parameters', 'access', 'myscope', 'inc', 'dec', "tac_name" , "offset"]
scope_ctr = 1
previous_scope = ""
scope_transitions = []

### Classes ###
access_specifier = "public"

### Functions ###
function_list = []
is_func_decl = False
parameter_specifiers = ["register", "auto", "const", "volatile"]
parenthesis_ctr = 0
is_parameter = False
parameter_offset = 0

### Namespaces ###
namespace_list = []
is_namespace = False
is_ns_member = False