示例#1
0
def main(_):
    flags_obj = tf.flags.FLAGS
    euler_graph = tf_euler.dataset.get_dataset(flags_obj.dataset)
    euler_graph.load_graph()

    dims = [flags_obj.hidden_dim, flags_obj.hidden_dim]
    if flags_obj.run_mode == 'train':
        metapath = [euler_graph.train_edge_type]
    else:
        metapath = [euler_graph.all_edge_type]
    num_steps = int((euler_graph.total_size + 1) // flags_obj.batch_size *
                    flags_obj.num_epochs)

    model = TAGCN(dims,
                  metapath,
                  euler_graph.feature_idx,
                  euler_graph.feature_dim,
                  euler_graph.label_idx,
                  euler_graph.label_dim,
                  K=flags_obj.layers)

    params = {
        'train_node_type': euler_graph.train_node_type[0],
        'batch_size': flags_obj.batch_size,
        'optimizer': flags_obj.optimizer,
        'learning_rate': flags_obj.learning_rate,
        'log_steps': flags_obj.log_steps,
        'model_dir': flags_obj.model_dir,
        'id_file': euler_graph.id_file,
        'infer_dir': flags_obj.model_dir,
        'total_size': euler_graph.total_size,
        'total_step': num_steps
    }
    config = tf.estimator.RunConfig(log_step_count_steps=None)
    model_estimator = NodeEstimator(model, params, config)

    if flags_obj.run_mode == 'train':
        model_estimator.train()
    elif flags_obj.run_mode == 'evaluate':
        model_estimator.evaluate()
    elif flags_obj.run_mode == 'infer':
        model_estimator.infer()
    else:
        raise ValueError('Run mode not exist!')
示例#2
0
文件: train.py 项目: wangdomg/dgl
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    if hasattr(torch, 'BoolTensor'):
        train_mask = torch.BoolTensor(data.train_mask)
        val_mask = torch.BoolTensor(data.val_mask)
        test_mask = torch.BoolTensor(data.test_mask)
    else:
        train_mask = torch.ByteTensor(data.train_mask)
        val_mask = torch.ByteTensor(data.val_mask)
        test_mask = torch.ByteTensor(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" % (n_edges, n_classes, train_mask.sum().item(),
                             val_mask.sum().item(), test_mask.sum().item()))

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # graph preprocess and calculate normalization factor
    g = data.graph
    # add self loop
    if args.self_loop:
        g.remove_edges_from(nx.selfloop_edges(g))
        g.add_edges_from(zip(g.nodes(), g.nodes()))
    g = DGLGraph(g)
    n_edges = g.number_of_edges()

    # create TAGCN model
    model = TAGCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, F.relu,
                  args.dropout)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
            "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                          acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))
示例#3
0
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    g = data[0]
    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        g = g.to(args.gpu)
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = g.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes, train_mask.int().sum().item(),
           val_mask.int().sum().item(), test_mask.int().sum().item()))

    # graph preprocess and calculate normalization factor
    # add self loop
    if args.self_loop:
        g = g.remove_self_loop().add_self_loop()
    n_edges = g.number_of_edges()

    # create TAGCN model
    model = TAGCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, F.relu,
                  args.dropout)

    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        acc = evaluate(model, features, labels, val_mask)
        print(
            "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
            "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                          acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))
示例#4
0
文件: train.py 项目: zwcdp/dgl
def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = mx.nd.array(data.features)
    labels = mx.nd.array(data.labels)
    train_mask = mx.nd.array(data.train_mask)
    val_mask = mx.nd.array(data.val_mask)
    test_mask = mx.nd.array(data.test_mask)
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes, train_mask.sum().asscalar(),
           val_mask.sum().asscalar(), test_mask.sum().asscalar()))

    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)

    features = features.as_in_context(ctx)
    labels = labels.as_in_context(ctx)
    train_mask = train_mask.as_in_context(ctx)
    val_mask = val_mask.as_in_context(ctx)
    test_mask = test_mask.as_in_context(ctx)

    # graph preprocess and calculate normalization factor
    g = data.graph
    # add self loop
    if args.self_loop:
        g.remove_edges_from(g.selfloop_edges())
        g.add_edges_from(zip(g.nodes(), g.nodes()))
    g = DGLGraph(g)

    # create TAGCN model
    model = TAGCN(g, in_feats, args.n_hidden, n_classes, args.n_layers,
                  mx.nd.relu, args.dropout)

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam', {
        'learning_rate': args.lr,
        'wd': args.weight_decay
    })

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur),
                                              loss.asscalar(), acc,
                                              n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, val_mask)
    print("Test accuracy {:.2%}".format(acc))
示例#5
0
def main(args):
    # load and preprocess dataset
    if args.dataset == 'cora':
        data = CoraGraphDataset()
    elif args.dataset == 'citeseer':
        data = CiteseerGraphDataset()
    elif args.dataset == 'pubmed':
        data = PubmedGraphDataset()
    else:
        raise ValueError('Unknown dataset: {}'.format(args.dataset))

    g = data[0]
    if args.gpu < 0:
        cuda = False
        ctx = mx.cpu(0)
    else:
        cuda = True
        ctx = mx.gpu(args.gpu)
        g = g.to(ctx)

    features = g.ndata['feat']
    labels = mx.nd.array(g.ndata['label'], dtype="float32", ctx=ctx)
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
    in_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes, train_mask.sum().asscalar(),
           val_mask.sum().asscalar(), test_mask.sum().asscalar()))

    # add self loop
    g = dgl.remove_self_loop(g)
    g = dgl.add_self_loop(g)

    # create TAGCN model
    model = TAGCN(g, in_feats, args.n_hidden, n_classes, args.n_layers,
                  mx.nd.relu, args.dropout)

    model.initialize(ctx=ctx)
    n_train_samples = train_mask.sum().asscalar()
    loss_fcn = gluon.loss.SoftmaxCELoss()

    # use optimizer
    print(model.collect_params())
    trainer = gluon.Trainer(model.collect_params(), 'adam', {
        'learning_rate': args.lr,
        'wd': args.weight_decay
    })

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        if epoch >= 3:
            t0 = time.time()
        # forward
        with mx.autograd.record():
            pred = model(features)
            loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1))
            loss = loss.sum() / n_train_samples

        loss.backward()
        trainer.step(batch_size=1)

        if epoch >= 3:
            loss.asscalar()
            dur.append(time.time() - t0)
            acc = evaluate(model, features, labels, val_mask)
            print(
                "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
                "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur),
                                              loss.asscalar(), acc,
                                              n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, val_mask)
    print("Test accuracy {:.2%}".format(acc))