def __init__(self, dtype, shape): self.host_accessor = None if impl.current_cfg().ndarray_use_torch: assert has_pytorch( ), "PyTorch must be available if you want to create a Taichi ndarray with PyTorch as its underlying storage." # pylint: disable=E1101 self.arr = torch.zeros(shape, dtype=to_pytorch_type(cook_dtype(dtype))) if impl.current_cfg().arch == _ti_core.Arch.cuda: self.arr = self.arr.cuda() else: self.arr = _ti_core.Ndarray(impl.get_runtime().prog, cook_dtype(dtype), shape)
def __init__(self, dtype, arr_shape): self.host_accessor = None self.dtype = cook_dtype(dtype) self.arr = _ti_core.Ndarray(impl.get_runtime().prog, cook_dtype(dtype), arr_shape)