def expected_archs(): """ Reads the environment variable `TI_WANTED_ARCHS` (usually set by option `-a` in `python tests/run_tests.py`) and gets all expected archs on the machine. If `TI_WANTED_ARCHS` is set and does not start with `^`, archs specified in it will be returned. If `TI_WANTED_ARCHS` starts with `^` (usually when option `-n` is specified in `python tests/run_tests.py`), all supported archs except archs specified in it will be returned. If `TI_WANTED_ARCHS` is not set, all supported archs will be returned. Returns: List[taichi_python.Arch]: All expected archs on the machine. """ archs = set([cpu, cuda, metal, vulkan, opengl, cc]) # TODO: now expected_archs is not called per test so we cannot test it archs = set( filter(functools.partial(is_arch_supported, use_gles=False), archs)) wanted_archs = os.environ.get('TI_WANTED_ARCHS', '') want_exclude = wanted_archs.startswith('^') if want_exclude: wanted_archs = wanted_archs[1:] wanted_archs = wanted_archs.split(',') # Note, ''.split(',') gives you [''], which is not an empty array. expanded_wanted_archs = set([]) for arch in wanted_archs: if arch == '': continue if arch == 'cpu': expanded_wanted_archs.add(cpu) elif arch == 'gpu': expanded_wanted_archs.update(gpu) else: expanded_wanted_archs.add(_ti_core.arch_from_name(arch)) if len(expanded_wanted_archs) == 0: return list(archs) if want_exclude: expected = archs - expanded_wanted_archs else: expected = expanded_wanted_archs return list(expected)
def init(arch=None, default_fp=None, default_ip=None, _test_mode=False, enable_fallback=True, require_version=None, **kwargs): """Initializes the Taichi runtime. This should always be the entry point of your Taichi program. Most importantly, it sets the backend used throughout the program. Args: arch: Backend to use. This is usually :const:`~taichi.lang.cpu` or :const:`~taichi.lang.gpu`. default_fp (Optional[type]): Default floating-point type. default_ip (Optional[type]): Default integral type. require_version (Optional[string]): A version string. **kwargs: Taichi provides highly customizable compilation through ``kwargs``, which allows for fine grained control of Taichi compiler behavior. Below we list some of the most frequently used ones. For a complete list, please check out https://github.com/taichi-dev/taichi/blob/master/taichi/program/compile_config.h. * ``cpu_max_num_threads`` (int): Sets the number of threads used by the CPU thread pool. * ``debug`` (bool): Enables the debug mode, under which Taichi does a few more things like boundary checks. * ``print_ir`` (bool): Prints the CHI IR of the Taichi kernels. * ``packed`` (bool): Enables the packed memory layout. See https://docs.taichi-lang.org/docs/layout. """ # Check version for users every 7 days if not disabled by users. _version_check.start_version_check_thread() # FIXME(https://github.com/taichi-dev/taichi/issues/4811): save the current working directory since it may be # changed by the Vulkan backend initialization on OS X. current_dir = os.getcwd() cfg = impl.default_cfg() # Check if installed version meets the requirements. if require_version is not None: check_require_version(require_version) # Make a deepcopy in case these args reference to items from ti.cfg, which are # actually references. If no copy is made and the args are indeed references, # ti.reset() could override the args to their default values. default_fp = _deepcopy(default_fp) default_ip = _deepcopy(default_ip) kwargs = _deepcopy(kwargs) reset() spec_cfg = _SpecialConfig() env_comp = _EnvironmentConfigurator(kwargs, cfg) env_spec = _EnvironmentConfigurator(kwargs, spec_cfg) # configure default_fp/ip: # TODO: move these stuff to _SpecialConfig too: env_default_fp = os.environ.get("TI_DEFAULT_FP") if env_default_fp: if default_fp is not None: _ti_core.warn( f'ti.init argument "default_fp" overridden by environment variable TI_DEFAULT_FP={env_default_fp}' ) if env_default_fp == '32': default_fp = f32 elif env_default_fp == '64': default_fp = f64 elif env_default_fp is not None: raise ValueError( f'Invalid TI_DEFAULT_FP={env_default_fp}, should be 32 or 64') env_default_ip = os.environ.get("TI_DEFAULT_IP") if env_default_ip: if default_ip is not None: _ti_core.warn( f'ti.init argument "default_ip" overridden by environment variable TI_DEFAULT_IP={env_default_ip}' ) if env_default_ip == '32': default_ip = i32 elif env_default_ip == '64': default_ip = i64 elif env_default_ip is not None: raise ValueError( f'Invalid TI_DEFAULT_IP={env_default_ip}, should be 32 or 64') if default_fp is not None: impl.get_runtime().set_default_fp(default_fp) if default_ip is not None: impl.get_runtime().set_default_ip(default_ip) # submodule configurations (spec_cfg): env_spec.add('log_level', str) env_spec.add('gdb_trigger') env_spec.add('short_circuit_operators') # compiler configurations (ti.cfg): for key in dir(cfg): if key in ['arch', 'default_fp', 'default_ip']: continue _cast = type(getattr(cfg, key)) if _cast is bool: _cast = None env_comp.add(key, _cast) unexpected_keys = kwargs.keys() if len(unexpected_keys): raise KeyError( f'Unrecognized keyword argument(s) for ti.init: {", ".join(unexpected_keys)}' ) # dispatch configurations that are not in ti.cfg: if not _test_mode: _ti_core.set_core_trigger_gdb_when_crash(spec_cfg.gdb_trigger) impl.get_runtime().short_circuit_operators = \ spec_cfg.short_circuit_operators _logging.set_logging_level(spec_cfg.log_level.lower()) # select arch (backend): env_arch = os.environ.get('TI_ARCH') if env_arch is not None: _logging.info(f'Following TI_ARCH setting up for arch={env_arch}') arch = _ti_core.arch_from_name(env_arch) cfg.arch = adaptive_arch_select(arch, enable_fallback, cfg.use_gles) if cfg.arch == cc: _ti_core.set_tmp_dir(locale_encode(prepare_sandbox())) print(f'[Taichi] Starting on arch={_ti_core.arch_name(cfg.arch)}') # user selected visible device visible_device = os.environ.get("TI_VISIBLE_DEVICE") if visible_device and (cfg.arch == vulkan or _ti_core.GGUI_AVAILABLE): _ti_core.set_vulkan_visible_device(visible_device) if _test_mode: return spec_cfg get_default_kernel_profiler().set_kernel_profiler_mode(cfg.kernel_profiler) # create a new program: impl.get_runtime().create_program() _logging.trace('Materializing runtime...') impl.get_runtime().prog.materialize_runtime() impl._root_fb = _snode.FieldsBuilder() if not os.environ.get("TI_DISABLE_SIGNAL_HANDLERS", False): impl.get_runtime()._register_signal_handlers() # Recover the current working directory (https://github.com/taichi-dev/taichi/issues/4811) os.chdir(current_dir) return None
def init(arch=None, default_fp=None, default_ip=None, _test_mode=False, enable_fallback=True, **kwargs): """Initializes the Taichi runtime. This should always be the entry point of your Taichi program. Most importantly, it sets the backend used throughout the program. Args: arch: Backend to use. This is usually :const:`~taichi.lang.cpu` or :const:`~taichi.lang.gpu`. default_fp (Optional[type]): Default floating-point type. default_ip (Optional[type]): Default integral type. **kwargs: Taichi provides highly customizable compilation through ``kwargs``, which allows for fine grained control of Taichi compiler behavior. Below we list some of the most frequently used ones. For a complete list, please check out https://github.com/taichi-dev/taichi/blob/master/taichi/program/compile_config.h. * ``cpu_max_num_threads`` (int): Sets the number of threads used by the CPU thread pool. * ``debug`` (bool): Enables the debug mode, under which Taichi does a few more things like boundary checks. * ``print_ir`` (bool): Prints the CHI IR of the Taichi kernels. * ``packed`` (bool): Enables the packed memory layout. See https://docs.taichi.graphics/lang/articles/advanced/layout. """ # Check version for users every 7 days if not disabled by users. skip = os.environ.get("TI_SKIP_VERSION_CHECK") if skip != 'ON': try_check_version() # Make a deepcopy in case these args reference to items from ti.cfg, which are # actually references. If no copy is made and the args are indeed references, # ti.reset() could override the args to their default values. default_fp = _deepcopy(default_fp) default_ip = _deepcopy(default_ip) kwargs = _deepcopy(kwargs) ti.reset() spec_cfg = _SpecialConfig() env_comp = _EnvironmentConfigurator(kwargs, ti.cfg) env_spec = _EnvironmentConfigurator(kwargs, spec_cfg) # configure default_fp/ip: # TODO: move these stuff to _SpecialConfig too: env_default_fp = os.environ.get("TI_DEFAULT_FP") if env_default_fp: if default_fp is not None: _ti_core.warn( f'ti.init argument "default_fp" overridden by environment variable TI_DEFAULT_FP={env_default_fp}' ) if env_default_fp == '32': default_fp = ti.f32 elif env_default_fp == '64': default_fp = ti.f64 elif env_default_fp is not None: raise ValueError( f'Invalid TI_DEFAULT_FP={env_default_fp}, should be 32 or 64') env_default_ip = os.environ.get("TI_DEFAULT_IP") if env_default_ip: if default_ip is not None: _ti_core.warn( f'ti.init argument "default_ip" overridden by environment variable TI_DEFAULT_IP={env_default_ip}' ) if env_default_ip == '32': default_ip = ti.i32 elif env_default_ip == '64': default_ip = ti.i64 elif env_default_ip is not None: raise ValueError( f'Invalid TI_DEFAULT_IP={env_default_ip}, should be 32 or 64') if default_fp is not None: impl.get_runtime().set_default_fp(default_fp) if default_ip is not None: impl.get_runtime().set_default_ip(default_ip) # submodule configurations (spec_cfg): env_spec.add('print_preprocessed') env_spec.add('log_level', str) env_spec.add('gdb_trigger') env_spec.add('excepthook') env_spec.add('experimental_real_function') env_spec.add('short_circuit_operators') # compiler configurations (ti.cfg): for key in dir(ti.cfg): if key in ['arch', 'default_fp', 'default_ip']: continue _cast = type(getattr(ti.cfg, key)) if _cast is bool: _cast = None env_comp.add(key, _cast) unexpected_keys = kwargs.keys() if len(unexpected_keys): raise KeyError( f'Unrecognized keyword argument(s) for ti.init: {", ".join(unexpected_keys)}' ) # dispatch configurations that are not in ti.cfg: if not _test_mode: ti.set_gdb_trigger(spec_cfg.gdb_trigger) impl.get_runtime().print_preprocessed = spec_cfg.print_preprocessed impl.get_runtime().experimental_real_function = \ spec_cfg.experimental_real_function impl.get_runtime().short_circuit_operators = \ spec_cfg.short_circuit_operators ti.set_logging_level(spec_cfg.log_level.lower()) if spec_cfg.excepthook: # TODO(#1405): add a way to restore old excepthook ti.enable_excepthook() # select arch (backend): env_arch = os.environ.get('TI_ARCH') if env_arch is not None: ti.info(f'Following TI_ARCH setting up for arch={env_arch}') arch = _ti_core.arch_from_name(env_arch) ti.cfg.arch = adaptive_arch_select(arch, enable_fallback, ti.cfg.use_gles) if ti.cfg.arch == cc: _ti_core.set_tmp_dir(locale_encode(prepare_sandbox())) print(f'[Taichi] Starting on arch={_ti_core.arch_name(ti.cfg.arch)}') # Torch based ndarray on opengl backend allocates memory on host instead of opengl backend. # So it won't work. if ti.cfg.arch == opengl and ti.cfg.ndarray_use_torch: ti.warn( 'Opengl backend doesn\'t support torch based ndarray. Setting ndarray_use_torch to False.' ) ti.cfg.ndarray_use_torch = False if _test_mode: return spec_cfg get_default_kernel_profiler().set_kernel_profiler_mode( ti.cfg.kernel_profiler) # create a new program: impl.get_runtime().create_program() ti.trace('Materializing runtime...') impl.get_runtime().prog.materialize_runtime() impl._root_fb = FieldsBuilder() if not os.environ.get("TI_DISABLE_SIGNAL_HANDLERS", False): impl.get_runtime()._register_signal_handlers() return None