示例#1
0
def handle_data(context, data):
    portfolio = context.portfolio

    for ticker, position in portfolio.positions.items():
        if not data.can_trade(ticker):
            continue

        ma_fast = abstract.MA(data.history(ticker, 'D', length=fast + 1),
                              timeperiod=fast,
                              price='close').dropna()
        ma_slow = abstract.MA(data.history(ticker, 'D', length=slow + 1),
                              timeperiod=slow,
                              price='close').dropna()

        if ma_slow[0] < ma_fast[0] and ma_slow[1] > ma_fast[1]:
            portfolio.send_order(ticker, -position['quantity'])

    for ticker in context.tickers:
        if not data.can_trade(ticker):
            continue

        ma_fast = abstract.MA(data.history(ticker, 'D', length=fast + 1),
                              timeperiod=fast,
                              price='close').dropna()
        ma_slow = abstract.MA(data.history(ticker, 'D', length=slow + 1),
                              timeperiod=slow,
                              price='close').dropna()

        if ma_slow[0] > ma_fast[0] and ma_slow[1] < ma_fast[1]:
            portfolio.send_order(ticker, 1000)
示例#2
0
def handle_data(context, data):
    portfolio = context.portfolio
    for ticker in portfolio.positions.keys():
        ticker = sid(ticker).symbol
        if not data.can_trade(ticker):
            continue

        ma_fast = abstract.MA(data.history(ticker, 'D', length=fast + 1),
                              timeperiod=fast,
                              price='close').dropna()
        ma_slow = abstract.MA(data.history(ticker, 'D', length=slow + 1),
                              timeperiod=slow,
                              price='close').dropna()

        if ma_slow[0] < ma_fast[0] and ma_slow[1] > ma_fast[1]:
            order(ticker, -1000)

    for ticker in context.tickers:
        ticker = symbol(ticker).symbol
        if not data.can_trade(ticker):
            continue

        ma_fast = abstract.MA(data.history(ticker, 'D', length=fast + 1),
                              timeperiod=fast,
                              price='close').dropna()
        ma_slow = abstract.MA(data.history(ticker, 'D', length=slow + 1),
                              timeperiod=slow,
                              price='close').dropna()

        if ma_slow[0] > ma_fast[0] and ma_slow[1] < ma_fast[1]:
            order(ticker, 1000)
示例#3
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        macd = ta.MACD(dataframe)

        dataframe['maShort'] = ta.MA(dataframe, timeperiod=50)
        dataframe['maMedium'] = ta.MA(dataframe, timeperiod=200)

        return dataframe
示例#4
0
 def execute(self, pool, context, data):
     out = []
     for code in pool:
         candle = data.history(code,
                               frequency=self.frequency,
                               length=self.slow + 1)
         try:
             fast = abstract.MA(candle, timeperiod=self.fast)
             slow = abstract.MA(candle, timeperiod=self.slow)
             if fast[-1] > slow[-1] and (fast[-2] < slow[-2]):
                 out.append(code)
         except Exception as e:
             print e
             print candle
     print 'MA', out
     return out
示例#5
0
def updateMA(Client, symbol, mas, interval, ma_type):

    if ma_type == MA_Type.SMA:
        folder = "ma"
    elif ma_type == MA_Type.WMA:
        folder = "wma"
    else:
        raise UnknownMATypeException()
    
    #check files and directories
    filename = f"{Client.MAIN_PATH}/data/candles/{interval}"
    filename2 = f"{Client.MAIN_PATH}/data/{folder}/{interval}"

    if not os.path.exists(filename):
        os.makedirs(filename)
    
    if not os.path.exists(filename2):
        os.makedirs(filename2)
    
    fn = f"{filename}/{symbol}.feather"
    fn2 = f"{filename2}/{symbol}.feather"

    if os.path.isfile(fn):
        df_cdl = feather.read_feather(fn)

        if not df_cdl["OpenTime"].empty:
        
            if os.path.isfile(fn2):
                df_ma = feather.read_feather(fn2)
            else:
                df_ma = pd.DataFrame(columns=["OpenTime","ClosePrice"])
                feather.write_feather(df_ma, fn2)

            length_old = len(df_ma.index)

            if not df_ma.empty:
                if length_old >= mas[-1]:
                    ma_lastDate = df_ma["OpenTime"].iloc[-(mas[-1] - 1)]
                    length_old = mas[-1] - 1
                else:
                    ma_lastDate = df_ma["OpenTime"].iloc[0]
            else:
                ma_lastDate = 0

            df_add = df_cdl.loc[df_cdl["OpenTime"] >= ma_lastDate, ["OpenTime", "ClosePrice"]]

            if not df_add.empty:
                for num in mas:
                    name = f"MA{num}"
                    df_add[name] = abstract.MA(df_add["ClosePrice"], timeperiod=num, matype=ma_type)
                
                df_add = df_add[length_old:]

                df_ma = df_ma.append(df_add, ignore_index=True)

                feather.write_feather(df_ma, fn2)
            else:
                print("Nothing to do")
        else:
            print("file is empty")
示例#6
0
def signal(data):
    data['RSI'] = abstract.RSI(data.close,2)
    data['MA'] = abstract.MA(data.close, timeperiod=7, matype=0)
    #RVI
    #Nem = data.close-data.open + 2*(data.iloc[-1:,:].close - data.iloc[-1:,:].open) + 2*(data.iloc[-2:,:].close - data.iloc[-1:,:].open) + data.iloc[-3:,:].close - data.iloc[-3:,:].open
    Nem =(data.close-data.open)+2*(data.close.shift(1) - data.open.shift(1))+2*(data.close.shift(2) - data.open.shift(2))+(data.close.shift(3) - data.open.shift(3))     
    Dem =data.high-data.low+2*(data.high.shift(1) - data.low.shift(1)) +2*(data.high.shift(2) - data.low.shift(2)) +(data.high.shift(3) - data.low.shift(3))
    #Dem = data.high-data.low + 2*(data.iloc[-1:,:].high - data.iloc[-1:,:].low) + 2*(data.iloc[-2:,:].high - data.iloc[-1:,:].low) + data.iloc[-3:,:].high - data.iloc[-3:,:].low
    
    
    data['RVI'] = RVI = (Nem/6)/(Dem/6)
    data['RVIR'] = (RVI + 2*RVI.shift(1) + 2*RVI.shift(2) + RVI.shift(3))/6

    if data.iloc[-1:,:].RSI <=RSILo | data.iloc[-2:-1,:].RSI <=RSILo | data.iloc[-3:-2,:].RSI <=RSILo:
        if data.iloc[-1:,:].RVI >= data.iloc[-1:,:].RVIR & data.iloc[-2:-1,:].RVI <= data.iloc[-2:-1,:].RVIR:
            now = datetime.now()
            if (now > today930 and now < today11) or (now > today13 and now < today15):
                ret_code, info_data = trd_ctx.accinfo_query()   #get ac info
                if info_data.cash > data.close[-1]*size:
                    print('place order')
                    buy()
                
    if size != 0:            
        if data.iloc[-1:,:].RSI >=RSIHi | data.iloc[-2:-1,:].RSI <=RSIHi | data.iloc[-3:-1,:].RSI <=RSIHi:  
            if data.iloc[-1:,:].RVI <= data.iloc[-1:,:].RVIR:
                if data.iloc[-1:,:].MA <= price:
                    print('sell')
                    sell()
示例#7
0
def MA(ohlcv, kw):
    """ :return Moving Average (ma) """
    params = {'timeperiod': 30, 'matype': 0}
    timeperiod, matype = _get_params(kw, params, ['timeperiod', 'matype'])
    result = talib.MA(ohlcv, timeperiod, matype)
    return {
        'ma': result
    }
示例#8
0
 def KELCH(self, df, length, mult):
     ma = tb.MA(df, timeperiod=length)
     range = tb.TRANGE(df)
     rangema = talib.MA(np.array(range), timeperiod=length)
     upperKC = ma + rangema * mult
     lowerKC = ma - rangema * mult
     return upperKC[len(upperKC) - 1], lowerKC[len(lowerKC) - 1], upperKC[len(upperKC) - 2], lowerKC[
         len(lowerKC) - 2]
示例#9
0
    def ma_200(self):
        ma_200 = abstract.MA(self.df, 200)
        self.df["ma_200"] = 0
        for i in range(199, len(self.df)):
            try:
                ma = ma_200[i]
                close = self.df.iloc[i]['close']

                #If Close pirce is higher tha MA200
                if ma < close:
                    self.df['ma_200'][i] = 1
            except:
                pass

        return self.df
示例#10
0
文件: api.py 项目: seoulai/market
def _get_statistics(n=1, start_time=None, end_time=None):
    ohlc = _get_ohlc(3, start_time, end_time)
    # TODO: maybe handle nan differently
    limit = n * -1
    stoch = np.nan_to_num(abstract.STOCH(ohlc))
    macd = np.nan_to_num(abstract.MACD(ohlc))
    output = dict(
        macd=macd[0][limit:].tolist(),
        macd_signal=macd[1][limit:].tolist(),
        macd_hist=macd[2][limit:].tolist(),
        stoch_slowk=stoch[0][limit:].tolist(),
        stoch_slowd=stoch[1][limit:].tolist(),
        vave=np.nan_to_num(abstract.MA(ohlc)[limit:]).tolist(),
        sma=np.nan_to_num(abstract.SMA(ohlc)[limit:]).tolist(),
        rsi=np.nan_to_num(abstract.RSI(ohlc)[limit:]).tolist(),
        stddev=np.nan_to_num(abstract.STDDEV(ohlc)[limit:]).tolist())
    return output
示例#11
0
    print('data ok')
  else:
    print('error:', data)
    continue
  #get snap data
  ret, snapdata = quote_ctx.get_market_snapshot(['HK.' + code])
  if ret == RET_OK:
    print('snap ok')
  else:
    print('error:', data)
    continue
    
  #check lot size and price per lot
  #print('lot_size')
  #print(snapdata.iloc[0].lot_size * snapdata.iloc[0].last_price)
  if snapdata.iloc[0].lot_size * snapdata.iloc[0].last_price > 10000:
    continue
  
  #calculate bias

  if len(data) == 0:
     continue
  MA = abstract.MA(data.close, timeperiod=12, matype=0)
  print('MA:' + str(MA))
  bias = (data.iloc[-1].close - MA[len(MA)-1])/(MA[len(MA)-1])
  if bias < 0:
    df = df.append({'Stock number':code}, ignore_index=True)  
  sleep(15)
quote_ctx.close() #close connection
df.to_csv('filter.csv', encoding='utf-8', index=False)
示例#12
0
def signal(data):
    global NumPos,openprice,indicator
    trd_ctx = OpenHKTradeContext(host='127.0.0.1', port=11111) #make connection
    data['RSI'] = abstract.RSI(data.close,RSIP)
    data['MA'] = abstract.MA(data.close, timeperiod=7, matype=0)
    #RVI
    #Nem = data.close-data.open + 2*(data.iloc[-1:,:].close - data.iloc[-1:,:].open) + 2*(data.iloc[-2:,:].close - data.iloc[-1:,:].open) + data.iloc[-3:,:].close - data.iloc[-3:,:].open
    data['Nem'] =((data.close-data.open)+2*(data.close.shift(1) - data.open.shift(1))+2*(data.close.shift(2) - data.open.shift(2))+(data.close.shift(3) - data.open.shift(3)))/6     
    data['Dem'] =((data.high-data.low)+2*(data.high.shift(1) - data.low.shift(1)) +2*(data.high.shift(2) - data.low.shift(2)) +(data.high.shift(3) - data.low.shift(3)))/6
    #Dem = data.high-data.low + 2*(data.iloc[-1:,:].high - data.iloc[-1:,:].low) + 2*(data.iloc[-2:,:].high - data.iloc[-1:,:].low) + data.iloc[-3:,:].high - data.iloc[-3:,:].low
    for j in range(1,RVIper+3):    #calculate RVI value
        maNEM = 0
        maDEM = 0
        for i in range (j,RVIper+j):
            maNEM = maNEM + data.iloc[-i].Nem
            maDEM = maDEM + data.iloc[-i].Dem
        #data.iloc[-j].at['RVI'] = (maNEM/RVIper)/(maDEM/RVIper)
        data.at[30-j,'RVI'] = (maNEM/RVIper)/(maDEM/RVIper)
    data.at[29,'RVIR'] = (data.iloc[-1].RVI + 2*data.iloc[-2].RVI + 2*data.iloc[-3].RVI + data.iloc[-4].RVI)/6   
    print(data.iloc[-3:])
    #data['RVI'] = (maNEM/RVIper)/(maDEM/RVIper)
    #data.iloc[-1].RVI = (maNEM/RVIper)/(maDEM/RVIper)
    #new_row = {'RVI':'', 'RVIR':''}
    #indicator = indicator.append(new_row,ignore_index=True)
    #indicator.at[len(indicator)-1,'RVI'] = (maNEM/RVIper)/(maDEM/RVIper)
    #data['RVIR'] = (RVI + 2*RVI.shift(1) + 2*RVI.shift(2) + RVI.shift(3))/6
    #data.iloc[-1].RVIR = (data.iloc[-1].RVI + 2*data.iloc[-2].RVI + 2*data.iloc[-3].RVI + data.iloc[-4].RVI)/6
    #data.at[-1,'RVIR'] = (data.iloc[-1].RVI + 2*data.iloc[-2].RVI + 2*data.iloc[-3].RVI + data.iloc[-4].RVI)/6
    #indicator.at[len(indicator)-1,'RVIR'] = (data.iloc[-1].RVI + 2*data.iloc[-2].RVI + 2*data.iloc[-3].RVI + data.iloc[-4].RVI)/6
    #print(indicator)
    
    if (data.iloc[-1].RSI <=RSILo) | (data.iloc[-2].RSI <=RSILo) | (data.iloc[-3].RSI <=RSILo):
        print('RSI match')
        if (data.iloc[-1].RVI > data.iloc[-1].RVIR) & (data.iloc[-2].RVI < data.iloc[-2].RVIR):
            print('RVI match')
            print('-----buy signal-----')
            print(size)
            notify("AutoTrade.py", "!!!!!!!Buy Signal!!!!!!!")
            now = datetime.now()
            print(now)
            print(data.iloc[-4].time_key)
            time_object = datetime.strptime(data.iloc[-4].time_key, '%Y-%m-%d %H:%M:%S')
            print(time_object)
            if (time_object >= today930):
                if (now > today930 and now < today11) or (now > today13 and now < today15):
                    ret_code, info_data = trd_ctx.accinfo_query(trd_env = TrdEnv.SIMULATE)   #get ac info
                    if ret_code == RET_OK:
                        print('info data ok')
                    else:
                        while ret_code != RET_OK:
                            ret_code, info_data = trd_ctx.accinfo_query(trd_env = TrdEnv.SIMULATE)
                    if info_data.iloc[-1].cash > ((data.iloc[-1].close)*(size)):
                        print('place order')
                        buy(data.iloc[-1].close)    #buy stock


    if NumPos > 0:
        print('RSI:')
        print(data.iloc[-1].RSI)
        print(data.iloc[-2].RSI)
        print(data.iloc[-3].RSI)
        print('RVI')
        print(data.iloc[-1].RVI - data.iloc[-1].RVIR)
        print('MA')
        print(data.iloc[-1].MA)
        print('close')
        print(data.iloc[-1].close)
        if (data.iloc[-1].RSI >=RSIHi) | (data.iloc[-2].RSI >=RSIHi) | (data.iloc[-3].RSI >=RSIHi):  
            if (data.iloc[-1].RVI <= data.iloc[-1].RVIR):
                if data.iloc[-1].close <= data.iloc[-1].MA:
                    notify("AutoTrade.py", "!!!!!!!SELL SELL SELL!!!!!!!")
                    print('~~~sell~~~')   #sell stock
                    sell(data.iloc[-1].close)
        if data.iloc[-1].close >= openprice*1.1: #sell if profit >10%
            sell(data.iloc[-1].close)
    trd_ctx.close()
示例#13
0
def set_ma(frame):
    close = pd.DataFrame(frame['close'].dropna(), dtype=numpy.float64)
    frame['ma'] = abstract.MA(close, timeperiod=50)
    return frame
示例#14
0
def signal(data):
    global NumPos
    trd_ctx = OpenHKTradeContext(host='127.0.0.1',
                                 port=11111)  #make connection
    data['RSI'] = abstract.RSI(data.close, 2)
    data['MA'] = abstract.MA(data.close, timeperiod=7, matype=0)
    #RVI
    data['Nem'] = ((data.close - data.open) + 2 *
                   (data.close.shift(1) - data.open.shift(1)) + 2 *
                   (data.close.shift(2) - data.open.shift(2)) +
                   (data.close.shift(3) - data.open.shift(3))) / 6
    data['Dem'] = (data.high - data.low + 2 *
                   (data.high.shift(1) - data.low.shift(1)) + 2 *
                   (data.high.shift(2) - data.low.shift(2)) +
                   (data.high.shift(3) - data.low.shift(3))) / 6
    maNEM = 0
    maDEM = 0
    for i in range(1, RVIper):
        maNEM = maNEM + data.iloc[-i].Nem
        maDEM = maDEM + data.iloc[-i].Dem

    data['RVI'] = RVI = (maNEM / RVIper) / (maDEM / RVIper)
    data['RVIR'] = (data.iloc[-1].RVI + 2 * data.iloc[-2].RVI +
                    2 * data.iloc[-3].RVI + data.iloc[-4].RVI) / 6

    if (data.iloc[-1].RSI <= RSILo) | (data.iloc[-2].RSI <=
                                       RSILo) | (data.iloc[-3].RSI <= RSILo):
        print('RSI match')
        if (data.iloc[-1].RVI > data.iloc[-1].RVIR) & (data.iloc[-2].RVI <
                                                       data.iloc[-2].RVIR):
            print('RVI match')
            print('-----buy signal-----')
            print(size)
            notify("AutoTrade.py", "!!!!!!!Buy Signal!!!!!!!")
            now = datetime.now()
            print(now)
            print(data.iloc[-4].time_key)
            time_object = datetime.strptime(data.iloc[-4].time_key,
                                            '%Y-%m-%d %H:%M:%S')
            print(time_object)
            if (time_object >= today930):
                if (now > today930 and now < today11) or (now > today13
                                                          and now < today15):
                    ret_code, info_data = trd_ctx.accinfo_query(
                        trd_env=TrdEnv.REAL)  #get ac info
                    if ret_code == RET_OK:
                        print('info data ok')
                    else:
                        while ret_code != RET_OK:
                            ret_code, info_data = trd_ctx.accinfo_query(
                                trd_env=TrdEnv.REAL)
                    if info_data.iloc[-1].cash > ((data.iloc[-1].close) *
                                                  (size)):
                        print('place order')
                        buy(data.iloc[-1].close)  #buy stock

    if NumPos > 0:
        print('RSI:')
        print(data.iloc[-1].RSI)
        print(data.iloc[-2].RSI)
        print(data.iloc[-3].RSI)
        print('RVI')
        print(data.iloc[-1].RVI)
        print(data.iloc[-1].RVIR)
        print(data.iloc[-1].RVI - data.iloc[-1].RVIR)
        print('MA')
        print(data.iloc[-1].MA)
        print('close')
        print(data.iloc[-1].close)
        if (data.iloc[-1].RSI >= RSIHi) | (data.iloc[-2].RSI >= RSIHi) | (
                data.iloc[-3].RSI >= RSIHi):
            if (data.iloc[-1].RVI <= data.iloc[-1].RVIR):
                if data.iloc[-1].close <= data.iloc[-1].MA:
                    notify("AutoTrade.py", "!!!!!!!SELL SELL SELL!!!!!!!")
                    print('~~~sell~~~')  #sell stock
                    sell(data.iloc[-1].close)
        if data.iloc[-1].close >= openprice * 1.1:  #sell if profit >10%
            sell(data.iloc[-1].close)
    trd_ctx.close()
示例#15
0
文件: ta.py 项目: hanhha/ACTS
def MA(data, period, interest, ma_type):
    ret = abstract.MA(data, timeperiod=period, price=interest, matype=ma_type)
    return ret
示例#16
0
def signal(data):
    global NumPos, openprice, indicator
    trd_ctx = OpenHKTradeContext(host='127.0.0.1',
                                 port=11111)  #make connection
    data['RSI'] = abstract.RSI(data.close, RSIP)
    data['MA'] = abstract.MA(data.close, timeperiod=7, matype=0)
    #RVI Original
    data['Nem_Ori'] = ((data.close - data.open) + 2 *
                       (data.close.shift(1) - data.open.shift(1)) + 2 *
                       (data.close.shift(2) - data.open.shift(2)) +
                       (data.close.shift(3) - data.open.shift(3))) / 6
    data['Dem_Ori'] = ((data.high - data.low) + 2 *
                       (data.high.shift(1) - data.low.shift(1)) + 2 *
                       (data.close.shift(2) - data.open.shift(2)) +
                       (data.close.shift(3) - data.open.shift(3))) / 6
    data['RVI_Ori'] = data.Nem_Ori / data.Dem_Ori
    data['RVIR_Ori'] = (data.RVI_Ori + 2 * data.shift(1).RVI_Ori +
                        2 * data.shift(2).RVI_Ori + data.shift(3).RVI_Ori) / 6

    #RVI
    data['Nem'] = ((data.close - data.open) + 2 *
                   (data.close.shift(1) - data.open.shift(1)) + 2 *
                   (data.close.shift(2) - data.open.shift(2)) +
                   (data.close.shift(3) - data.open.shift(3))) / 6
    data['Dem'] = ((data.high - data.low) + 2 *
                   (data.high.shift(1) - data.low.shift(1)) + 2 *
                   (data.high.shift(2) - data.low.shift(2)) +
                   (data.high.shift(3) - data.low.shift(3))) / 6
    for j in range(1, RVIper + 3):  #calculate RVI value with period
        maNEM = 0
        maDEM = 0
        for i in range(j, RVIper + j):
            maNEM = maNEM + data.iloc[-i].Nem
            maDEM = maDEM + data.iloc[-i].Dem
        data.at[30 - j, 'RVI'] = (maNEM / RVIper) / (maDEM / RVIper)
    data.at[29, 'RVIR'] = (data.iloc[-1].RVI + 2 * data.iloc[-2].RVI +
                           2 * data.iloc[-3].RVI + data.iloc[-4].RVI) / 6
    print(data.iloc[-3:])

    #get the newest stock price
    ret, stock = quote_ctx.get_cur_kline('HK.' + str(code), 3, SubType.K_3M,
                                         AuType.QFQ)
    print(stock.iloc[-3:])

    #when to in
    if NumPos == 0:
        if (data.iloc[-1].RSI <= RSILo) | (data.iloc[-2].RSI <= RSILo) | (
                data.iloc[-3].RSI <= RSILo):
            print('RSI match')
            if (data.iloc[-1].RVI_Ori > data.iloc[-1].RVIR_Ori) & (
                    data.iloc[-2].RVI_Ori < data.iloc[-2].RVIR_Ori):
                print('RVI match')
                print('-----buy signal-----')
                print(size)
                notify("AutoTrade.py", "!!!!!!!Buy Signal!!!!!!!" + str(code))
                print('\007')
                print('\007')
                print('\007')
                now = datetime.now()
                print(now)
                print(data.iloc[-4].time_key)
                time_object = datetime.strptime(data.iloc[-4].time_key,
                                                '%Y-%m-%d %H:%M:%S')
                print(time_object)
                if (time_object >= today930):
                    if (now > today940
                            and now < today11) or (now > today13
                                                   and now < today15):
                        ret_code, info_data = trd_ctx.accinfo_query(
                            trd_env=TrdEnv.REAL)  #get ac info
                        if ret_code == RET_OK:
                            print('info data ok')
                        else:
                            while ret_code != RET_OK:
                                ret_code, info_data = trd_ctx.accinfo_query(
                                    trd_env=TrdEnv.REAL)
                        '''
                        ret, stock = quote_ctx.get_cur_kline('HK.' + str(code), 3, SubType.K_3M, AuType.QFQ)
                        if ret == RET_OK:
                            print('stock price get')
                        else:
                            while ret != RET_OK:
                                print('stock price again loop')
                                ret, stock = quote_ctx.get_cur_kline('HK.' + str(code), 3, SubType.K_3M, AuType.QFQ)
                        '''
                        if info_data.iloc[-1].cash > ((stock.iloc[-1].close) *
                                                      (size)):
                            print('place order')
                            notify("AutoTrade.py", "Buy Signal" + str(code))
                            buy(data.iloc[-1].close, False)  #buy stock

    if NumPos > 0:
        #second in
        '''
        ret, stock = quote_ctx.get_cur_kline('HK.' + str(code), 3, SubType.K_3M, AuType.QFQ) #refresh stock price
        if ret == RET_OK:
            print('stock price get')
        else:
            while ret != RET_OK:
                print('stock price again loop')
                ret, stock = quote_ctx.get_cur_kline('HK.' + str(code), 3, SubType.K_3M, AuType.QFQ)
        '''
        if (stock.iloc[-1].close - openprice) > 0.003:
            buy(stock.iloc[-1].close, True)
        #sell
        print('RSI:')
        print(data.iloc[-1].RSI)
        print(data.iloc[-2].RSI)
        print(data.iloc[-3].RSI)
        print('RVI')
        print(data.iloc[-1].RVI - data.iloc[-1].RVIR)
        print('MA')
        print(data.iloc[-1].MA)
        print('close')
        print(stock.iloc[-1].close)
        print('openprice')
        print(openprice)
        if NumPos == size * hand:
            if (stock.iloc[-1].close - openprice) < -0.002:
                print(' ')
                print(stock.iloc[-1].close)
                print(openprice)
                print(' ')
                notify("AutoTrade.py",
                       "!!!!!!!SELL SELL SELL!!!!!!! first hand")
                print('\007')
                print('\007')
                print('\007')
                print('~~~sell~~~')  #sell stock
                sell(stock.iloc[-1].close)
        elif (stock.iloc[-1].close - openprice) < -0.001:
            print(' ')
            print(stock.iloc[-1].close)
            print(openprice)
            print(' ')
            notify("AutoTrade.py",
                   "!!!!!!!SELL SELL SELL!!!!!!! multi hand" + str(code))
            print('~~~sell~~~')  #sell stock
            print('\007')
            print('\007')
            print('\007')
            sell(stock.iloc[-1].close)
        '''
        if (data.iloc[-1].RSI >=RSIHi) | (data.iloc[-2].RSI >=RSIHi) | (data.iloc[-3].RSI >=RSIHi):  
            if (data.iloc[-1].RVI <= data.iloc[-1].RVIR):
                if data.iloc[-1].close <= data.iloc[-1].MA:
                    notify("AutoTrade.py", "!!!!!!!SELL SELL SELL!!!!!!!")
                    print('~~~sell~~~')   #sell stock
                    sell(data.iloc[-1].close)
        if data.iloc[-1].close >= openprice*1.1: #sell if profit >10%
            sell(data.iloc[-1].close)
        '''
    trd_ctx.close()
示例#17
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Load the pre-built regressor
        dataframe['historical_mean'] = ta.MA(dataframe, timeperiod=33)

        return dataframe
示例#18
0
    print('one_dif ', c)
    print('two_dif ', c)


# # 3. pandas数据处理试题

# 3.1 如何查看列名、怎么对数据转置

# 3.2 读取data里的600029这只股票的DataFrame,将其收盘价转换成用Numpy的Array格式,并用talib计算10日EMA值,返回ndarray的最后五个值

# In[4]:


import talib.abstract as ta

df_ma = pd.DataFrame({name: ta.MA(value, 10) for name, value in PN.iteritems()})
print(df_ma.tail())


# In[5]:





# 3.3 读取sz50.xlsx的['600029.XSHG','600050.XSHG','601318.XSHG']的全数据做成Panel

# In[6]:


from datetime import datetime