示例#1
0
def test_TEVA():
    size = 50
    df = pl.DataFrame({
        "open":
        np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
        "high":
        np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
        "low":
        np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
        "close":
        np.random.uniform(low=0.0, high=100.0, size=size).astype("float32"),
        "volume":
        np.random.uniform(low=0.0, high=100.0, size=size).astype("float32")
    })
    tema1 = abstract.TEMA(df, timeperiod=9)
    assert isinstance(tema1, pl.Series)
    assert len(tema1) == 50
    inputs = abstract.TEMA.get_input_arrays()
    assert inputs.columns == df.columns
    for column in df.columns:
        assert_np_arrays_equal(inputs[column].to_numpy(),
                               df[column].to_numpy())

    tema2 = abstract.TEMA(df, timeperiod=9)
    assert isinstance(tema2, pl.Series)
    assert len(tema2) == 50
    inputs = abstract.TEMA.get_input_arrays()
    assert inputs.columns == df.columns
    for column in df.columns:
        assert_np_arrays_equal(inputs[column].to_numpy(),
                               df[column].to_numpy())

    assert_np_arrays_equal(tema1.to_numpy(), tema2.to_numpy())
示例#2
0
    def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Dynamic TA indicators
        Used so hyperopt can optimized around the period of various indicators
        """
        for rsip in range(rsiStart, (rsiEnd + 1)):
            dataframe[f'rsi({rsip})'] = ta.RSI(dataframe, timeperiod=rsip)

        for temap in range(temaStart, (temaEnd + 1)):
            dataframe[f'tema({temap})'] = ta.TEMA(dataframe, timeperiod=temap)

        """
        Static TA indicators.
        RSI and TEMA Only used when --spaces does not include buy or sell
        """
        # Stochastic Slow
        # fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
        stoch_slow = ta.STOCH(dataframe, fastk_period=fastkPeriod, slowk_period=slowkPeriod, slowd_period=slowdPeriod)
        dataframe['stoch-slowk'] = stoch_slow['slowk']
        dataframe['stoch-slowd'] = stoch_slow['slowd']

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe)

        return dataframe
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        for std in range(1, 5):
            # Bollinger bands
            bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=std)
            dataframe[f'bb_lowerband{std}'] = bollinger['lower']
            dataframe[f'bb_middleband{std}'] = bollinger['mid']
            dataframe[f'bb_upperband{std}'] = bollinger['upper']

        # TEMA - Triple Exponential Moving Average
        dataframe[f'tema'] = ta.TEMA(dataframe, timeperiod=9)

        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
示例#4
0
def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2,
                                    nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['cci'] = ta.CCI(dataframe)
    dataframe['rsi'] = ta.RSI(dataframe)
    dataframe['mom'] = ta.MOM(dataframe)
    dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
    dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
    dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
    dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
    dataframe['ao'] = awesome_oscillator(dataframe)
    macd = ta.MACD(dataframe)
    dataframe['macd'] = macd['macd']
    dataframe['macdsignal'] = macd['macdsignal']
    dataframe['macdhist'] = macd['macdhist']
    return dataframe
    def do_populate_indicators(self, dataframe: DataFrame,
                               metadata: dict) -> DataFrame:
        """
        Adds multiple TA indicators to MoniGoMani's DataFrame per pair.
        Should be called with 'informative_pair' (1h candles) during backtesting/hyperopting with TimeFrame-Zoom!

        Performance Note: For the best performance be frugal on the number of indicators you are using.
        Only add in indicators that you are using in your weighted signal configuration for MoniGoMani,
        otherwise you will waste your memory and CPU usage.

        :param dataframe: (DataFrame) DataFrame with data from the exchange
        :param metadata: (dict) Additional information, like the currently traded pair
        :return DataFrame: DataFrame for MoniGoMani with all mandatory indicator data populated
        """

        # Momentum Indicators (timeperiod is expressed in candles)
        # -------------------

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowk'] = stoch['slowk']

        # MACD - Moving Average Convergence Divergence
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd[
            'macd']  # MACD - Blue TradingView Line (Bullish if on top)
        dataframe['macdsignal'] = macd[
            'macdsignal']  # Signal - Orange TradingView Line (Bearish if on top)

        # MFI - Money Flow Index (Under bought / Over sold & Over bought / Under sold / volume Indicator)
        dataframe['mfi'] = ta.MFI(dataframe)

        # Overlap Studies
        # ---------------

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_middleband'] = bollinger['mid']

        # SMA's & EMA's are trend following tools (Should not be used when line goes sideways)
        # SMA - Simple Moving Average (Moves slower compared to EMA, price trend over X periods)
        dataframe['sma9'] = ta.SMA(dataframe, timeperiod=9)
        dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        dataframe['sma200'] = ta.SMA(dataframe, timeperiod=200)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Volume Indicators
        # -----------------

        # Rolling VWAP - Volume Weighted Average Price
        dataframe['rolling_vwap'] = qtpylib.rolling_vwap(dataframe)

        return dataframe
示例#6
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]))
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) /
            dataframe["bb_middleband"])

        # TEMA
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Set Up Bollinger Bands
        upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['close'],
                                                  timeperiod=40)
        upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(
            qtpylib.typical_price(dataframe), timeperiod=20)

        # only putting some bands into dataframe as the others are not used elsewhere in the strategy
        dataframe['lower-bb1'] = lower_bb1
        dataframe['lower-bb2'] = lower_bb2
        dataframe['mid-bb2'] = mid_bb2

        dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()

        dataframe['ema_slow'] = ta.EMA(dataframe['close'], timeperiod=48)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=24).mean()

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher-rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        dataframe['adx'] = ta.ADX(dataframe)

        return dataframe
示例#8
0
def TEMA(ohlcv, kw):
    """ :return Triple Exponential Moving Average (tema) """
    params = {'timeperiod': 30}
    timeperiod = _get_params(kw, params, ['timeperiod'])[0]
    result = talib.TEMA(ohlcv, timeperiod)
    return {
        'tema': result
    }
示例#9
0
 def technical_index(self):
     df = self.max_min_price()
     df2 = self.institutional_investors()
     df['RSI'] = abstract.RSI(df) / 100
     df['CMO'] =(abstract.CMO(df)+100) / (2 *100)
     df['MACD'] =(abstract.MACD(df)['macd']+abstract.MACD(df)['macd'].max()) / (2 *abstract.MACD(df)['macd'].max())
     df['WILLR'] =(abstract.WILLR(df)+100) / (2 *100)
     df['WMA'] =abstract.WMA(df) / abstract.WMA(df).max()
     df['PPO'] =(abstract.PPO(df)+abstract.PPO(df).max()) / (2 *abstract.PPO(df).max())
     df['EMA'] =abstract.EMA(df) / abstract.EMA(df).max()
     df['ROC'] =(abstract.ROC(df)+abstract.ROC(df).max()) / (2 *abstract.ROC(df).max())
     df['SMA'] =abstract.SMA(df) / abstract.SMA(df).max()
     df['TEMA'] =abstract.TEMA(df) / abstract.TEMA(df).max()
     df['CCI'] =(abstract.CCI(df)+abstract.CCI(df).max()) / (2 *abstract.CCI(df).max())
     df['investment_trust'] = (df2['investment_trust'] + df2['investment_trust'].max()) / (2*df2['investment_trust'].max())
     df['foreign_investor'] = (df2['foreign_investor'] + df2['foreign_investor'].max()) / (2*df2['foreign_investor'].max())
     df = df.drop(columns=['volume', 'open', 'high', 'low', 'close', 'close_max', 'close_min'])
     df = df.dropna()
     return df
示例#10
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        return dataframe
示例#11
0
def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['cci'] = ta.CCI(dataframe)
    return dataframe
示例#12
0
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        return dataframe
示例#13
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        dataframe['sma_200'] = ta.SMA(dataframe, timeperiod=200)
        dataframe['sma_50'] = ta.SMA(dataframe, timeperiod=200)

        dataframe['adx'] = ta.ADX(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        return dataframe
示例#14
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        for rsip in range(self.rsiStart, (self.rsiEnd + 1)):
            dataframe[f'rsi({rsip})'] = ta.RSI(dataframe, timeperiod=rsip)

        for temap in range(self.temaStart, (self.temaEnd + 1)):
            dataframe[f'tema({temap})'] = ta.TEMA(dataframe, timeperiod=temap)

        # Stochastic Slow
        # fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
        stoch_slow = ta.STOCH(dataframe,
                              fastk_period=self.fastkPeriod,
                              slowk_period=self.slowkPeriod,
                              slowd_period=self.slowdPeriod)
        dataframe['stoch-slowk'] = stoch_slow['slowk']
        dataframe['stoch-slowd'] = stoch_slow['slowd']

        return dataframe
示例#15
0
    def get_overlap_studies(self):
        # https://mrjbq7.github.io/ta-lib/func_groups/overlap_studies.html
        if self.verbose:
            print self.ticker, 'get_overlap_studies'

        _a = ['open', 'high', 'low', 'close', 'volume']
        inputs = {_a[i]: self.data[_a[i]].values for i in range(len(_a))}

        # simple moving average
        self.data['os_sma_20'] = abstract.SMA(inputs, timeperiod=20)
        self.data['os_sma_50'] = abstract.SMA(inputs, timeperiod=50)
        self.data['os_sma_200'] = abstract.SMA(inputs, timeperiod=200)

        # bollinger bands
        self.data['os_bbu_20'], self.data['os_bbm_20'], self.data[
            'os_bbl_20'] = abstract.BBANDS(inputs,
                                           timeperiod=20,
                                           nbdevup=2,
                                           nbdevdn=2,
                                           matype=0)

        # double exponential moving average
        self.data['os_dema_20'] = abstract.DEMA(inputs, timeperiod=20)

        # exponential moving average
        self.data['os_ema_20'] = abstract.EMA(inputs, timeperiod=20)

        # midpoint over period
        self.data['os_mp_14'] = abstract.MIDPOINT(inputs, timeperiod=14)

        # parabolic SAR
        self.data['os_sar'] = abstract.SAR(inputs, acceleration=0, maximum=0)

        # triple exponential moving average
        self.data['os_tema_5'] = abstract.TEMA(inputs, timeperiod=5)

        # triangular moving average
        self.data['os_trima_30'] = abstract.TRIMA(inputs, timeperiod=30)

        # weighted moving average
        self.data['os_wma_30'] = abstract.WMA(inputs, timeperiod=30)
示例#16
0
文件: Stoch.py 项目: madkep/strat
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Stochastic Slow
        # fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
        stoch_slow = ta.STOCH(
            dataframe,
            fastk_period=self.stoch_params['stoch-fastk-period'],
            slowk_period=self.stoch_params['stoch-slowk-period'],
            slowd_period=self.stoch_params['stoch-slowd-period'])
        dataframe['stoch-slowk'] = stoch_slow['slowk']
        dataframe['stoch-slowd'] = stoch_slow['slowd']

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe,
                                  timeperiod=self.buy_params['rsi-period'])

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe,
                                    timeperiod=self.sell_params['tema-period'])

        return dataframe
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Heikin Ashi Candles
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        # Set Up Bollinger Bands
        upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['ha_close'],
                                                  timeperiod=40)
        upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(
            qtpylib.typical_price(heikinashi), timeperiod=20)

        # only putting some bands into dataframe as the others are not used elsewhere in the strategy
        dataframe['lower-bb1'] = lower_bb1
        dataframe['lower-bb2'] = lower_bb2
        dataframe['mid-bb2'] = mid_bb2

        dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
        dataframe['closedelta'] = (dataframe['ha_close'] -
                                   dataframe['ha_close'].shift()).abs()
        dataframe['tail'] = (dataframe['ha_close'] - dataframe['ha_low']).abs()

        dataframe['ema_slow'] = ta.EMA(dataframe['ha_close'], timeperiod=48)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=24).mean()

        dataframe['rsi'] = ta.RSI(heikinashi, timeperiod=14)

        dataframe['tema'] = ta.TEMA(heikinashi, timeperiod=9)
        dataframe['adx'] = ta.ADX(heikinashi)
        dataframe['rmi'] = RMI(heikinashi)

        dataframe['sar'] = ta.SAR(heikinashi)

        return dataframe
示例#18
0
    def evaluate_tema(self,
                      period,
                      field="close",
                      prefix="tema",
                      impact_buy=1,
                      impact_sell=1):
        """
        evaluates a tema moving average
        :param dataframe:
        :param period:
        :param prefix:
        :return:
        """
        self._weights(impact_buy, impact_sell)
        dataframe = self.dataframe
        name = '{}_{}_{}'.format(prefix, field, period)
        dataframe[name] = ta.TEMA(dataframe, timeperiod=period, field=field)

        dataframe.loc[((dataframe[name] < dataframe[field])),
                      'buy_{}'.format(name)] = (1 * impact_buy)

        dataframe.loc[((dataframe[name] > dataframe[field])),
                      'sell_{}'.format(name)] = (1 * impact_sell)
示例#19
0
    def evaluate_tema(self,
                      period,
                      field="close",
                      prefix="tema",
                      impact_buy=1,
                      impact_sell=1):
        """
        evaluates a tema moving average
        :param dataframe:
        :param period:
        :param prefix:
        :return:
        """
        self._weights(impact_buy, impact_sell)
        dataframe = self.dataframe
        name = f"{prefix}_{field}_{period}"
        dataframe[name] = ta.TEMA(dataframe, timeperiod=period, field=field)

        dataframe.loc[((dataframe[name] < dataframe[field])),
                      f"buy_{name}"] = 1 * impact_buy

        dataframe.loc[((dataframe[name] > dataframe[field])),
                      f"sell_{name}"] = 1 * impact_sell
示例#20
0
def PMAX(dataframe, period=4, multiplier=0.1, length=4, MAtype=7, src=1):
    import talib.abstract as ta
    df = dataframe.copy()
    mavalue = 'MA_' + str(MAtype) + '_' + str(length)
    atr = 'ATR_' + str(period)
    df[atr] = ta.ATR(df, timeperiod=period)
    pm = 'pm_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)
    pmx = 'pmX_' + str(period) + '_' + str(multiplier) + '_' + str(length) + '_' + str(MAtype)

    if src == 1:
        masrc = df["close"]
    elif src == 2:
        masrc = (df["high"] + df["low"]) / 2
    elif src == 3:
        masrc = (df["high"] + df["low"] + df["close"] + df["open"]) / 4
    if MAtype == 1:
        df[mavalue] = ta.EMA(masrc, timeperiod=length)
    elif MAtype == 2:
        df[mavalue] = ta.DEMA(masrc, timeperiod=length)
    elif MAtype == 3:
        df[mavalue] = ta.T3(masrc, timeperiod=length)
    elif MAtype == 4:
        df[mavalue] = ta.SMA(masrc, timeperiod=length)
    elif MAtype == 5:
        df[mavalue] = VIDYA(df, length=length)
    elif MAtype == 6:
        df[mavalue] = ta.TEMA(masrc, timeperiod=length)
    elif MAtype == 7:
        df[mavalue] = ta.WMA(df, timeperiod=length)
    elif MAtype == 8:
        df[mavalue] = vwma(df, length)
    elif MAtype == 9:
        df[mavalue] = zema(df, period=length)
    # Compute basic upper and lower bands
    df['basic_ub'] = df[mavalue] + (multiplier * df[atr])
    df['basic_lb'] = df[mavalue] - (multiplier * df[atr])
    # Compute final upper and lower bands
    df['final_ub'] = 0.00
    df['final_lb'] = 0.00
    for i in range(period, len(df)):
        df['final_ub'].iat[i] = df['basic_ub'].iat[i] if (
            df['basic_ub'].iat[i] < df['final_ub'].iat[i - 1]
            or df[mavalue].iat[i - 1] > df['final_ub'].iat[i - 1]) else df['final_ub'].iat[i - 1]
        df['final_lb'].iat[i] = df['basic_lb'].iat[i] if (
            df['basic_lb'].iat[i] > df['final_lb'].iat[i - 1]
            or df[mavalue].iat[i - 1] < df['final_lb'].iat[i - 1]) else df['final_lb'].iat[i - 1]

    df[pm] = 0.00
    for i in range(period, len(df)):
        df[pm].iat[i] = (
            df['final_ub'].iat[i] if (df[pm].iat[i - 1] == df['final_ub'].iat[i - 1]
                                      and df[mavalue].iat[i] <= df['final_ub'].iat[i])
            else df['final_lb'].iat[i] if (
                df[pm].iat[i - 1] == df['final_ub'].iat[i - 1]
                and df[mavalue].iat[i] > df['final_ub'].iat[i]) else df['final_lb'].iat[i]
            if (df[pm].iat[i - 1] == df['final_lb'].iat[i - 1]
                and df[mavalue].iat[i] >= df['final_lb'].iat[i]) else df['final_ub'].iat[i]
            if (df[pm].iat[i - 1] == df['final_lb'].iat[i - 1]
                and df[mavalue].iat[i] < df['final_lb'].iat[i]) else 0.00)

    # up/down belirteçi / main logic
    df[pmx] = np.where((df[pm] > 0.00), np.where((df[mavalue] < df[pm]), 'down',  'up'), np.NaN)
    
    df.drop(['basic_ub', 'basic_lb', 'final_ub', 'final_lb'], inplace=True, axis=1)

    df.fillna(0, inplace=True)

    return df
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        """

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # Awesome oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
        """
        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)
        """
        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        """
        # ROC
        dataframe['roc'] = ta.ROC(dataframe)
        """
        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi'] = fishers_inverse(dataframe['rsi'])

        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        """
        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        """

        # Overlap Studies
        # ------------------------------------

        # Previous Bollinger bands
        # Because ta.BBANDS implementation is broken with small numbers, it actually
        # returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
        # and use middle band instead.
        dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2,
                                        nbdevdn=2)['lowerband']

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        return dataframe
示例#22
0
def tema(dataframe, period, field='close'):
    import talib.abstract as ta
    return ta.TEMA(dataframe, timeperiod=period, price=field)
示例#23
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]))
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) /
            dataframe["bb_middleband"])

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
示例#24
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # ichis
        ichi = ichimoku(dataframe)
        dataframe['tenkan'] = ichi['tenkan_sen']
        dataframe['kijun'] = ichi['kijun_sen']
        dataframe['senkou_a'] = ichi['senkou_span_a']
        dataframe['senkou_b'] = ichi['senkou_span_b']
        dataframe['cloud_green'] = ichi['cloud_green']
        dataframe['cloud_red'] = ichi['cloud_red']

        # Momentum Indicator
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)
        """
        # Awesome oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # Commodity Channel Index: values Oversold:<-100, Overbought:>100
        dataframe['cci'] = ta.CCI(dataframe)

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # ROC
        dataframe['roc'] = ta.ROC(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)

        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        """

        # Overlap Studies
        # ------------------------------------

        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        """
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # SAR Parabol
        dataframe['sar'] = ta.SAR(dataframe)

        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
        """

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        """
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']
        """

        # Retrieve best bid and best ask
        # ------------------------------------
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
    def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
        # resampled dataframe to establish if we are in an uptrend, downtrend or sideways trend
        dataframe = StrategyHelper.resample(dataframe, self.ticker_interval, self.resample_factor)

        ##################################################################################
        # required for entry and exit
        # CCI
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['mfi_smooth'] = ta.EMA(dataframe, timeperiod=11, price='mfi')
        dataframe['cci_smooth'] = ta.EMA(dataframe, timeperiod=11, price='cci')
        dataframe['rsi_smooth'] = ta.EMA(dataframe, timeperiod=11, price='rsi')

        ##################################################################################
        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        ##################################################################################
        # required for entry
        bollinger = qtpylib.bollinger_bands(dataframe['close'], window=20, stds=1.6)
        dataframe['entry_bb_lowerband'] = bollinger['lower']
        dataframe['entry_bb_upperband'] = bollinger['upper']
        dataframe['entry_bb_middleband'] = bollinger['mid']

        dataframe['bpercent'] = (dataframe['close'] - dataframe['bb_lowerband']) / (
                dataframe['bb_upperband'] - dataframe['bb_lowerband']) * 100

        dataframe['bsharp'] = (dataframe['bb_upperband'] - dataframe['bb_lowerband']) / (
            dataframe['bb_middleband'])

        # these seem to be kind useful to measure when bands widen
        # but than they are directly based on the moving average
        dataframe['bsharp_slow'] = ta.SMA(dataframe, price='bsharp', timeperiod=11)
        dataframe['bsharp_medium'] = ta.SMA(dataframe, price='bsharp', timeperiod=8)
        dataframe['bsharp_fast'] = ta.SMA(dataframe, price='bsharp', timeperiod=5)

        ##################################################################################
        # rsi and mfi are slightly weighted
        dataframe['mfi_rsi_cci_smooth'] = (dataframe['rsi_smooth'] * 1.125 + dataframe['mfi_smooth'] * 1.125 +
                                           dataframe[
                                               'cci_smooth']) / 3

        dataframe['mfi_rsi_cci_smooth'] = ta.TEMA(dataframe, timeperiod=21, price='mfi_rsi_cci_smooth')

        # playgound
        dataframe['candle_size'] = (dataframe['close'] - dataframe['open']) * (
                dataframe['close'] - dataframe['open']) / 2

        # helps with pattern recognition
        dataframe['average'] = (dataframe['close'] + dataframe['open'] + dataframe['high'] + dataframe['low']) / 4
        dataframe['sma_slow'] = ta.SMA(dataframe, timeperiod=200, price='close')
        dataframe['sma_medium'] = ta.SMA(dataframe, timeperiod=100, price='close')
        dataframe['sma_fast'] = ta.SMA(dataframe, timeperiod=50, price='close')

        return dataframe
示例#26
0
    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """


        #divergences
        #     - -   - -
        #         -
        #     4 3 2 1 0

        #src[4] > src[2] and src[3] > src[2] and src[2] < src[1] and src[2] < src[0]
        dataframe['bullish_div'] = (
                                        ( dataframe['close'].shift(4) > dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(3) > dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(2) < dataframe['close'].shift(1) ) & 
                                        ( dataframe['close'].shift(2) < dataframe['close'] )
                                   ) 

        


        #queremos el volumen medio de las ultimas 24 velas, si es mayor queremos comprar, si es que no es volumen a la baja, esto habria que compararlo tomando el precio unas horas antes
        dataframe['mean24volume'] = dataframe.volume.rolling(24).mean() 

        dataframe['mean68close'] = dataframe.close.rolling(68).mean() 
        
        #         -
        #     - -   - -
        #     4 3 2 1 0
        #src[4] < src[2] and src[3] < src[2] and src[2] > src[1] and src[2] > src[0]

        dataframe['bearish_div'] = (
                                        ( dataframe['close'].shift(4) < dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(3) < dataframe['close'].shift(2) ) & 
                                        ( dataframe['close'].shift(2) > dataframe['close'].shift(1) ) & 
                                        ( dataframe['close'].shift(2) > dataframe['close'] )
                                    )

        dataframe['cci_one'] = ta.CCI(dataframe, timeperiod=170)
        dataframe['cci_two'] = ta.CCI(dataframe, timeperiod=34)

        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # # Plus Directional Indicator / Movement
        # dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        # dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        # dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        # dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # # Aroon, Aroon Oscillator
        # aroon = ta.AROON(dataframe)
        # dataframe['aroonup'] = aroon['aroonup']
        # dataframe['aroondown'] = aroon['aroondown']
        # dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # # Awesome Oscillator
        # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # # Ultimate Oscillator
        # dataframe['uo'] = ta.ULTOSC(dataframe)

        # # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        # rsi = 0.1 * (dataframe['rsi'] - 50)
        # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # # Stochastic Slow
        # stoch = ta.STOCH(dataframe)
        # dataframe['slowd'] = stoch['slowd']
        # dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # # Stochastic RSI
        # Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this.
        # STOCHRSI is NOT aligned with tradingview, which may result in non-expected results.
        # stoch_rsi = ta.STOCHRSI(dataframe)
        # dataframe['fastd_rsi'] = stoch_rsi['fastd']
        # dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        # dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
        )
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
        )

        # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
        dataframe['ema200'] = ta.EMA(dataframe, timeperiod=200)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # Heikin Ashi Strategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        dataframe['haclosestrat'] = (dataframe['ha_open'] + dataframe['ha_high'] + dataframe['ha_low'] + dataframe['close']) / 4
        dataframe['haopenstrat'] = (dataframe['ha_open'] + dataframe['close']) / 2

        dataframe['highstrat']  = max(dataframe['ha_high'] , max(dataframe['ha_open'], dataframe['close'] ))
        dataframe['lowstrat']  = min(dataframe['haLow'] , min(dataframe['ha_open'], dataframe['close'] ))
        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        return dataframe
示例#27
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame

        Performance Note: For the best performance be frugal on the number of indicators
        you are using. Let uncomment only the indicator you are using in your strategies
        or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
        :param dataframe: Dataframe with data from the exchange
        :param metadata: Additional information, like the currently traded pair
        :return: a Dataframe with all mandatory indicators for the strategies
        """

        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # # Plus Directional Indicator / Movement
        # dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        # dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        # dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        # dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # # Aroon, Aroon Oscillator
        # aroon = ta.AROON(dataframe)
        # dataframe['aroonup'] = aroon['aroonup']
        # dataframe['aroondown'] = aroon['aroondown']
        # dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # # Awesome Oscillator
        # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # # Ultimate Oscillator
        # dataframe['uo'] = ta.ULTOSC(dataframe)

        # # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        # dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        # rsi = 0.1 * (dataframe['rsi'] - 50)
        # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # # Stochastic Slow
        # stoch = ta.STOCH(dataframe)
        # dataframe['slowd'] = stoch['slowd']
        # dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # # Stochastic RSI
        # stoch_rsi = ta.STOCHRSI(dataframe)
        # dataframe['fastd_rsi'] = stoch_rsi['fastd']
        # dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        # dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe["bb_percent"] = (
            (dataframe["close"] - dataframe["bb_lowerband"]) /
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]))
        dataframe["bb_width"] = (
            (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) /
            dataframe["bb_middleband"])

        # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Cycle Indicator
        # ------------------------------------
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # # Heikin Ashi Strategy
        # heikinashi = qtpylib.heikinashi(dataframe)
        # dataframe['ha_open'] = heikinashi['open']
        # dataframe['ha_close'] = heikinashi['close']
        # dataframe['ha_high'] = heikinashi['high']
        # dataframe['ha_low'] = heikinashi['low']

        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
示例#28
0
    def populate_indicators(dataframe: DataFrame) -> DataFrame:
        """
        Adds several different TA indicators to the given DataFrame
        """
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
        dataframe['cci'] = ta.CCI(dataframe)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']
        dataframe['mfi'] = ta.MFI(dataframe)
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)
        dataframe['roc'] = ta.ROC(dataframe)
        dataframe['rsi'] = ta.RSI(dataframe)
        # Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
        # Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
        # Stoch
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']
        # Stoch fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        # Stoch RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']
        # Bollinger bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        # EMA - Exponential Moving Average
        dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
        # SAR Parabolic
        dataframe['sar'] = ta.SAR(dataframe)
        # SMA - Simple Moving Average
        dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
        # Hilbert Transform Indicator - SineWave
        hilbert = ta.HT_SINE(dataframe)
        dataframe['htsine'] = hilbert['sine']
        dataframe['htleadsine'] = hilbert['leadsine']

        # Pattern Recognition - Bullish candlestick patterns
        # ------------------------------------
        """
        # Hammer: values [0, 100]
        dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # Inverted Hammer: values [0, 100]
        dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # Dragonfly Doji: values [0, 100]
        dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # Piercing Line: values [0, 100]
        dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # Morningstar: values [0, 100]
        dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # Three White Soldiers: values [0, 100]
        dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
        """

        # Pattern Recognition - Bearish candlestick patterns
        # ------------------------------------
        """
        # Hanging Man: values [0, 100]
        dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # Shooting Star: values [0, 100]
        dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # Gravestone Doji: values [0, 100]
        dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # Dark Cloud Cover: values [0, 100]
        dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # Evening Doji Star: values [0, 100]
        dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # Evening Star: values [0, 100]
        dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
        """

        # Pattern Recognition - Bullish/Bearish candlestick patterns
        # ------------------------------------
        """
        # Three Line Strike: values [0, -100, 100]
        dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # Spinning Top: values [0, -100, 100]
        dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # Engulfing: values [0, -100, 100]
        dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # Harami: values [0, -100, 100]
        dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # Three Outside Up/Down: values [0, -100, 100]
        dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # Three Inside Up/Down: values [0, -100, 100]
        dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
        """

        # Chart type
        # ------------------------------------
        # Heikinashi stategy
        heikinashi = qtpylib.heikinashi(dataframe)
        dataframe['ha_open'] = heikinashi['open']
        dataframe['ha_close'] = heikinashi['close']
        dataframe['ha_high'] = heikinashi['high']
        dataframe['ha_low'] = heikinashi['low']

        return dataframe
示例#29
0
def populate_indicators(dataframe: DataFrame) -> DataFrame:
    """
    Adds several different TA indicators to the given DataFrame
    """
    dataframe['sar'] = ta.SAR(dataframe)
    dataframe['adx'] = ta.ADX(dataframe)
    stoch = ta.STOCHF(dataframe)
    dataframe['fastd'] = stoch['fastd']
    dataframe['fastk'] = stoch['fastk']
    dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2,
                                    nbdevdn=2)['lowerband']
    dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
    dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
    dataframe['mfi'] = ta.MFI(dataframe)
    dataframe['cci'] = ta.CCI(dataframe)
    dataframe['rsi'] = ta.RSI(dataframe)
    dataframe['mom'] = ta.MOM(dataframe)
    dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
    dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
    dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
    dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
    dataframe['ao'] = awesome_oscillator(dataframe)
    macd = ta.MACD(dataframe)
    dataframe['macd'] = macd['macd']
    dataframe['macdsignal'] = macd['macdsignal']
    dataframe['macdhist'] = macd['macdhist']

    # add volatility indicators
    dataframe['natr'] = ta.NATR(dataframe)

    # add volume indicators
    dataframe['obv'] = ta.OBV(dataframe)

    # add more momentum indicators
    dataframe['rocp'] = ta.ROCP(dataframe)

    # add some pattern recognition
    dataframe['CDL2CROWS'] = ta.CDL2CROWS(dataframe)
    dataframe['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(dataframe)
    dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe)
    dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
    dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe)
    dataframe['CDL3STARSINSOUTH'] = ta.CDL3STARSINSOUTH(dataframe)
    dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe)
    dataframe['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(dataframe)
    dataframe['CDLBELTHOLD'] = ta.CDLBELTHOLD(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)
    dataframe['CDLDOJI'] = ta.CDLDOJI(dataframe)
    dataframe['CDLDOJISTAR'] = ta.CDLDOJISTAR(dataframe)
    dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
    dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe)
    dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)
    dataframe['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(dataframe)

    # enter categorical time
    hour = datetime.strptime(str(dataframe['date'][len(dataframe) - 1]),
                             "%Y-%m-%d %H:%M:%S").hour
    for h in range(24):
        dataframe['hour_{0:02}'.format(h)] = int(h == hour)

    return dataframe
示例#30
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        if not self.dp:
            # Don't do anything if DataProvider is not available.
            return dataframe

        inf_tf = '1w'

        # Get the informative pair
        informative = self.dp.get_pair_dataframe(pair=metadata['pair'],
                                                 timeframe=inf_tf)

        # Parabolic SAR
        informative['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        informative['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # Use the helper function merge_informative_pair to safely merge the pair
        # Automatically renames the columns and merges a shorter timeframe dataframe and a longer timeframe informative pair
        # use ffill to have the 1d value available in every row throughout the day.
        # Without this, comparisons between columns of the original and the informative pair would only work once per day.
        # Full documentation of this method, see below
        dataframe = merge_informative_pair(dataframe,
                                           informative,
                                           self.timeframe,
                                           inf_tf,
                                           ffill=True)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # Parabolic SAR
        dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # EMA - Exponential Moving Average
        dataframe['ema7'] = ta.EMA(dataframe, timeperiod=7)

        # Bollinger Bands
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe),
                                            window=20,
                                            stds=2)

        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']

        dataframe['bb_width'] = (
            (dataframe['bb_upperband'] - dataframe['bb_lowerband']) /
            dataframe['bb_middleband'])

        dataframe['bb_width_past_1'] = ((dataframe['bb_upperband'].shift(1) -
                                         dataframe['bb_lowerband'].shift(1)) /
                                        dataframe['bb_middleband'].shift(1))

        dataframe['bb_width_past_2'] = ((dataframe['bb_upperband'].shift(2) -
                                         dataframe['bb_lowerband'].shift(2)) /
                                        dataframe['bb_middleband'].shift(2))

        dataframe['bb_width_past_3'] = ((dataframe['bb_upperband'].shift(3) -
                                         dataframe['bb_lowerband'].shift(3)) /
                                        dataframe['bb_middleband'].shift(3))

        dataframe['bb_width_past_4'] = ((dataframe['bb_upperband'].shift(4) -
                                         dataframe['bb_lowerband'].shift(4)) /
                                        dataframe['bb_middleband'].shift(4))

        dataframe['bb_width_past_5'] = ((dataframe['bb_upperband'].shift(5) -
                                         dataframe['bb_lowerband'].shift(5)) /
                                        dataframe['bb_middleband'].shift(5))

        # Check if the entry already exists
        if not metadata['pair'] in self.custom_info:
            # Create empty entry for this pair
            self.custom_info[metadata['pair']] = {}

        if self.dp.runmode.value in ('backtest', 'hyperopt'):
            # add indicator mapped to correct DatetimeIndex to custom_info
            self.custom_info[metadata['pair']]['sar_1w'] = dataframe[[
                'date', 'sar_1w'
            ]].set_index('date')
            self.custom_info[metadata['pair']]['tema_1w'] = dataframe[[
                'date', 'tema_1w'
            ]].set_index('date')

        return dataframe