def hammer_doji(server): #The idea is to look at yesterdays candles, find hammes/dragonfly dojis/dojis and then initiate trade if we get a new high. watchlist = [] tickers = db.read_snp_tickers(server.serverSite).Symbol.tolist() for ticker in tickers: try: #Get the latest data only data = db.read_from_database( "Select distinct date, ticker,uOpen, uHigh, uLow, uClose from dailydata where ticker ='" + ticker + "' ORDER BY date DESC limit 1;", server.serverSite) data["dojidf"] = talib.CDLDRAGONFLYDOJI(data.uOpen, data.uHigh, data.uLow, data.uClose) data["hammer"] = talib.CDLHAMMER(data.uOpen, data.uHigh, data.uLow, data.uClose) data["doji"] = talib.CDLDOJI(data.uOpen, data.uHigh, data.uLow, data.uClose) if (int(data.dojidf) == 100 | int(data.hammer) == 100 | int(data.doji) == 100): watchlist.append([ticker, "buy", data.uHigh[0], "H/D"]) logging.info("Hd found", ticker) except: logging.info("Database fetch has failed for ticker", ticker) #Returns an list of lists with ticker, enrty price and strategy return watchlist
def get_cdldragonflydoji(ohlc): cdldragonflydoji = ta.CDLDRAGONFLYDOJI(ohlc['1_open'], ohlc['2_high'], ohlc['3_low'], ohlc['4_close']) ohlc['cdldragonflydoji'] = cdldragonflydoji return ohlc
def candle_patt(df,x,all_fig,params): '''ローソク足パターンのローソク足チャートへの描画''' # パターンチェック & シグナル値を描画用に置き換え df['Marubozu'] = ta.CDLMARUBOZU(df['Open'],df['High'],df['Low'],df['Close']) * df['High'] / 100 df['Engulfing_Pattern'] = ta.CDLENGULFING(df['Open'],df['High'],df['Low'],df['High']) * df['Close'] / 100 df['Hammer'] = ta.CDLHAMMER(df['Open'],df['High'],df['Low'],df['Close']) * df['High'] / 100 df['Dragonfly_Doji'] = ta.CDLDRAGONFLYDOJI(df['Open'],df['High'],df['Low'],df['Close']) * df['High'] / 100 # 列名を作成 pattern_list = list(df.loc[:,'Marubozu':'Dragonfly_Doji'].columns) label_list = [ k+'_label' for k in list(df.loc[:,'Marubozu':'Dragonfly_Doji'].columns)] # 0をNaNで埋める df[pattern_list] = df[pattern_list].where(~(df[pattern_list] == 0.0), np.nan) # 売り買いラベルの作成 df[label_list] = df[pattern_list] df[label_list] = df[label_list].where(~(df[label_list] > 0), 1) df[label_list] = df[label_list].where(~(df[label_list] < 0), -1) df[label_list] = df[label_list].where(~(df[label_list] == 1), '買い') df[label_list] = df[label_list].where(~(df[label_list] == -1), '売り') # 発生価格の絶対値化 df[pattern_list] = df[pattern_list].abs() # 各シグナルを描画 for pattern in list(df.loc[:,'Marubozu':'Dragonfly_Doji'].columns): all_fig.add_trace(go.Scatter(x=x, y=df[pattern],mode='markers+text',text=df[label_list],textposition="top center",name=pattern, marker = dict(size = 9),opacity=0.8),row=1, col=1) return all_fig
def add_pattern_reconition_factor(df): df['two_crows'] = talib.CDL2CROWS(df['open'], df['high'], df['low'], df['close']) df['three_black_crows'] = talib.CDL3BLACKCROWS(df['open'], df['high'], df['low'], df['close']) df['three_inside'] = talib.CDL3INSIDE(df['open'], df['high'], df['low'], df['close']) df['three_line_strike'] = talib.CDL3LINESTRIKE(df['open'], df['high'], df['low'], df['close']) df['three_outside'] = talib.CDL3OUTSIDE(df['open'], df['high'], df['low'], df['close']) df['three_star_south'] = talib.CDL3STARINSOUTH(df['open'], df['high'], df['low'], df['close']) df['three_white_soldiers'] = talib.CDL3WHITESOLDIERS( df['open'], df['high'], df['low'], df['close']) df['abandoned_baby'] = talib.CDLABANDONEDBABY(df['open'], df['high'], df['low'], df['close']) df['advance_block'] = talib.CDLADVANCEBLOCK(df['open'], df['high'], df['low'], df['close']) df['belt_hold'] = talib.CDLBELTHOLD(df['open'], df['high'], df['low'], df['close']) df['break_away'] = talib.CDLBREAKAWAY(df['open'], df['high'], df['low'], df['close']) df['closing_marubozu'] = talib.CDLCLOSINGMARUBOZU(df['open'], df['high'], df['low'], df['close']) df['conceal_baby_swall'] = talib.CDLCONCEALBABYSWALL( df['open'], df['high'], df['low'], df['close']) df['counter_attack'] = talib.CDLCOUNTERATTACK(df['open'], df['high'], df['low'], df['close']) df['dark_cloud_cover'] = talib.CDLDARKCLOUDCOVER(df['open'], df['high'], df['low'], df['close']) df['doji'] = talib.CDLDOJI(df['open'], df['high'], df['low'], df['close']) df['doji_star'] = talib.CDLDOJISTAR(df['open'], df['high'], df['low'], df['close']) df['dragon_fly_doji'] = talib.CDLDRAGONFLYDOJI(df['open'], df['high'], df['low'], df['close']) df['engulfing'] = talib.CDLENGULFING(df['open'], df['high'], df['low'], df['close']) df['evening_doji_star'] = talib.CDLEVENINGDOJISTAR(df['open'], df['high'], df['low'], df['close'], penetration=0) df['gap_sideside_white'] = talib.CDLGAPSIDESIDEWHITE( df['open'], df['high'], df['low'], df['close']) df['grave_stone_doji'] = talib.CDLGRAVESTONEDOJI(df['open'], df['high'], df['low'], df['close']) df['hammer'] = talib.CDLHAMMER(df['open'], df['high'], df['low'], df['close']) df['morning_doji_star'] = talib.CDLMORNINGDOJISTAR(df['open'], df['high'], df['low'], df['close'], penetration=0) df['on_neck'] = talib.CDLONNECK(df['open'], df['high'], df['low'], df['close']) return df
def dragonfly_doji(self): """ 名称:Dragonfly Doji 蜻蜓十字/T形十字 简介:一日K线模式,开盘后价格一路走低,之后收复,收盘价与开盘价相同,预示趋势反转。 """ result = talib.CDLDRAGONFLYDOJI(open=np.array(self.dataframe['open']), high=np.array(self.dataframe['high']), low=np.array(self.dataframe['low']), close=np.array( self.dataframe['close'])) self.dataframe['dragonfly_doji'] = result
def CDLDRAGONFLYDOJI(open, high, low, close): ''' Dragonfly Doji 蜻蜓十字/T形十字 分组: Pattern Recognition 形态识别 简介: 一日K线模式,开盘后价格一路走低, 之后收复,收盘价与开盘价相同,预示趋势反转。 integer = CDLDRAGONFLYDOJI(open, high, low, close) ''' return talib.CDLDRAGONFLYDOJI(open, high, low, close)
def dragonfly_doji(self, sym, frequency): if not self.kbars_ready(sym, frequency): return [] opens = self.open(sym, frequency) highs = self.high(sym, frequency) lows = self.low(sym, frequency) closes = self.close(sym, frequency) cdl = ta.CDLDRAGONFLYDOJI(opens, highs, lows, closes) return cdl
def bear_marubozu_dragonfly(self, *args): ham = talib.CDLMARUBOZU(self.o, self.h, self.l, self.c) dragon = talib.CDLDRAGONFLYDOJI(self.o, self.h, self.l, self.c) idx = np.where(ham == -100)[0] idx1 = np.where(dragon == 100)[0] o = [] for x in idx1: if x - 1 in idx and self.array[x][0] == self.array[x][-1]: o.append(x) a = np.zeros(len(self.o)) a[o] = 1 return a
def bullRmarubozuTwice_Dragonfly(self, *args): mar = talib.CDLMARUBOZU(self.o, self.h, self.l, self.c) dra = talib.CDLDRAGONFLYDOJI(self.o, self.h, self.l, self.c) idx = np.where(mar == -100)[0] idx1 = np.where(dra == 100)[0] o = [] for x in idx1: if x - 1 in idx and x - 2 in idx: o.append(x) a = np.zeros(len(self.o)) a[o] = 1 return a
def bull_marubozu_dragonfly(self, *args): ham = talib.CDLMARUBOZU(self.o, self.h, self.l, self.c) dra = talib.CDLDRAGONFLYDOJI(self.o, self.h, self.l, self.c) idx = np.where(ham == 100)[0] idx2 = np.where(dra == 100)[0] o = [] for x in idx2: try: if x - 1 in idx and self.array[x][0] == self.array[x][-1]: o.append(x) except Exception: continue a = np.zeros(len(self.o)) a[o] = 1 return a
def get_rates(codes, data, start, end): rate = {} code = codes['code'].get_values() for i in code: close = data[i]['close'] high = data[i]['high'] low = data[i]['low'] open = data[i]['open'] # 用CDLBELTHO/D进行测试 t1 = np.array(tl.CDLHIGHWAVE(open, high, low, close)) t2 = np.array(tl.CDLHANGINGMAN(open, high, low, close)) t3 = np.array(tl.CDLDRAGONFLYDOJI(open, high, low, close)) t4 = np.array(tl.CDLHARAMICROSS(open, high, low, close)) # t4 = np.minimum(t4,0) t5 = np.array(tl.CDLDARKCLOUDCOVER(open, high, low, close)) test = t1 + t2 + t3 + t5 + t4 rate[i] = get_rate(close, test) return rate
def bull_marubozu_gravestone_dragonfly(self, *args): ham = talib.CDLMARUBOZU(self.o, self.h, self.l, self.c) gra = talib.CDLGRAVESTONEDOJI(self.o, self.h, self.l, self.c) dra = talib.CDLDRAGONFLYDOJI(self.o, self.h, self.l, self.c) idx = np.where(ham == 100)[0] idx2 = np.where(gra == 100)[0] idx3 = np.where(dra == 100)[0] o = [] for x in idx3: try: if (x - 1 in idx2 and x - 2 in idx and self.array[x - 2][0] == self.array[x - 2][-1] and self.array[x - 1][0] == self.array[x - 1][-1]): o.append(x) except Exception: continue a = np.zeros(len(self.o)) a[o] = 1 return a
def bear_greenBody_gravestone_Dragonfly_Takuri(self, *args): dra = talib.CDLDRAGONFLYDOJI(self.o, self.h, self.l, self.c) grave = talib.CDLGRAVESTONEDOJI(self.o, self.h, self.l, self.c) taku = talib.CDLTAKURI(self.o, self.h, self.l, self.c) idx1 = np.where(grave == 100)[0] idx2 = np.where(dra == 100)[0] idx3 = np.where(taku == 100)[0] o = [] for x in idx3: if (x - 1 in idx2 and x - 2 in idx1 and self.check_status( self.array[x - 3][0], self.array[x - 3][-1]) == "Bullish" and self.check_status(self.array[x][0], self.array[x][-1]) == "Bearish"): o.append(x) a = np.zeros(len(self.o)) a[o] = 1 return a
def CDLDRAGONFLYDOJI(data, **kwargs): _check_talib_presence() popen, phigh, plow, pclose, pvolume = _extract_ohlc(data) return talib.CDLDRAGONFLYDOJI(popen, phigh, plow, pclose, **kwargs)
def candles(source): open = source['open'] high = source['high'] low = source['low'] close = source['close'] source = source.join( pd.Series(talib.CDL2CROWS(open, high, low, close), name='CDL2CROWS')) source = source.join( pd.Series(talib.CDL3BLACKCROWS(open, high, low, close), name='CDL3BLACKCROWS')) source = source.join( pd.Series(talib.CDL3INSIDE(open, high, low, close), name='CDL3INSIDE')) source = source.join( pd.Series(talib.CDL3OUTSIDE(open, high, low, close), name='CDL3OUTSIDE')) source = source.join( pd.Series(talib.CDL3STARSINSOUTH(open, high, low, close), name='CDL3STARSINSOUTH')) source = source.join( pd.Series(talib.CDL3WHITESOLDIERS(open, high, low, close), name='CDL3WHITESOLDIERS')) source = source.join( pd.Series(talib.CDLABANDONEDBABY(open, high, low, close), name='CDLABANDONEDBABY')) source = source.join( pd.Series(talib.CDLADVANCEBLOCK(open, high, low, close), name='CDLADVANCEBLOCK')) source = source.join( pd.Series(talib.CDLBELTHOLD(open, high, low, close), name='CDLBELTHOLD')) source = source.join( pd.Series(talib.CDLBREAKAWAY(open, high, low, close), name='CDLBREAKAWAY')) source = source.join( pd.Series(talib.CDLCLOSINGMARUBOZU(open, high, low, close), name='CDLCLOSINGMARUBOZU')) source = source.join( pd.Series(talib.CDLCONCEALBABYSWALL(open, high, low, close), name='CDLCONCEALBABYSWALL')) source = source.join( pd.Series(talib.CDLCOUNTERATTACK(open, high, low, close), name='CDLCOUNTERATTACK')) source = source.join( pd.Series(talib.CDLDARKCLOUDCOVER(open, high, low, close), name='CDLDARKCLOUDCOVER')) source = source.join( pd.Series(talib.CDLDOJI(open, high, low, close), name='CDLDOJI')) source = source.join( pd.Series(talib.CDLDOJISTAR(open, high, low, close), name='CDLDOJISTAR')) source = source.join( pd.Series(talib.CDLDRAGONFLYDOJI(open, high, low, close), name='CDLDRAGONFLYDOJI')) source = source.join( pd.Series(talib.CDLENGULFING(open, high, low, close), name='CDLENGULFING')) source = source.join( pd.Series(talib.CDLEVENINGDOJISTAR(open, high, low, close), name='CDLEVENINGDOJISTAR')) source = source.join( pd.Series(talib.CDLEVENINGSTAR(open, high, low, close), name='CDLEVENINGSTAR')) source = source.join( pd.Series(talib.CDLGAPSIDESIDEWHITE(open, high, low, close), name='CDLGAPSIDESIDEWHITE')) source = source.join( pd.Series(talib.CDLGRAVESTONEDOJI(open, high, low, close), name='CDLGRAVESTONEDOJI')) source = source.join( pd.Series(talib.CDLHAMMER(open, high, low, close), name='CDLHAMMER')) source = source.join( pd.Series(talib.CDLHANGINGMAN(open, high, low, close), name='CDLHANGINGMAN')) source = source.join( pd.Series(talib.CDLHARAMI(open, high, low, close), name='CDLHARAMI')) source = source.join( pd.Series(talib.CDLHARAMICROSS(open, high, low, close), name='CDLHARAMICROSS')) source = source.join( pd.Series(talib.CDLHIGHWAVE(open, high, low, close), name='CDLHIGHWAVE')) source = source.join( pd.Series(talib.CDLHIKKAKE(open, high, low, close), name='CDLHIKKAKE')) source = source.join( pd.Series(talib.CDLHIKKAKEMOD(open, high, low, close), name='CDLHIKKAKEMOD')) source = source.join( pd.Series(talib.CDLHOMINGPIGEON(open, high, low, close), name='CDLHOMINGPIGEON')) source = source.join( pd.Series(talib.CDLIDENTICAL3CROWS(open, high, low, close), name='CDLIDENTICAL3CROWS')) source = source.join( pd.Series(talib.CDLINNECK(open, high, low, close), name='CDLINNECK')) source = source.join( pd.Series(talib.CDLINVERTEDHAMMER(open, high, low, close), name='CDLINVERTEDHAMMER')) source = source.join( pd.Series(talib.CDLKICKING(open, high, low, close), name='CDLKICKING')) source = source.join( pd.Series(talib.CDLKICKINGBYLENGTH(open, high, low, close), name='CDLKICKINGBYLENGTH')) source = source.join( pd.Series(talib.CDLLADDERBOTTOM(open, high, low, close), name='CDLLADDERBOTTOM')) source = source.join( pd.Series(talib.CDLLONGLEGGEDDOJI(open, high, low, close), name='CDLLONGLEGGEDDOJI')) source = source.join( pd.Series(talib.CDLLONGLINE(open, high, low, close), name='CDLLONGLINE')) source = source.join( pd.Series(talib.CDLMARUBOZU(open, high, low, close), name='CDLMARUBOZU')) source = source.join( pd.Series(talib.CDLMATCHINGLOW(open, high, low, close), name='CDLMATCHINGLOW')) source = source.join( pd.Series(talib.CDLMATHOLD(open, high, low, close), name='CDLMATHOLD')) source = source.join( pd.Series(talib.CDLMORNINGDOJISTAR(open, high, low, close), name='CDLMORNINGDOJISTAR')) source = source.join( pd.Series(talib.CDLMORNINGSTAR(open, high, low, close), name='CDLMORNINGSTAR')) source = source.join( pd.Series(talib.CDLONNECK(open, high, low, close), name='CDLONNECK')) source = source.join( pd.Series(talib.CDLPIERCING(open, high, low, close), name='CDLPIERCING')) source = source.join( pd.Series(talib.CDLRICKSHAWMAN(open, high, low, close), name='CDLRICKSHAWMAN')) source = source.join( pd.Series(talib.CDLRISEFALL3METHODS(open, high, low, close), name='CDLRISEFALL3METHODS')) source = source.join( pd.Series(talib.CDLSEPARATINGLINES(open, high, low, close), name='CDLSEPARATINGLINES')) source = source.join( pd.Series(talib.CDLSHOOTINGSTAR(open, high, low, close), name='CDLSHOOTINGSTAR')) source = source.join( pd.Series(talib.CDLSHORTLINE(open, high, low, close), name='CDLSHORTLINE')) source = source.join( pd.Series(talib.CDLSPINNINGTOP(open, high, low, close), name='CDLSPINNINGTOP')) source = source.join( pd.Series(talib.CDLSTALLEDPATTERN(open, high, low, close), name='CDLSTALLEDPATTERN')) source = source.join( pd.Series(talib.CDLSTICKSANDWICH(open, high, low, close), name='CDLSTICKSANDWICH')) source = source.join( pd.Series(talib.CDLTAKURI(open, high, low, close), name='CDLTAKURI')) source = source.join( pd.Series(talib.CDLTASUKIGAP(open, high, low, close), name='CDLTASUKIGAP')) source = source.join( pd.Series(talib.CDLTHRUSTING(open, high, low, close), name='CDLTHRUSTING')) source = source.join( pd.Series(talib.CDLTRISTAR(open, high, low, close), name='CDLTRISTAR')) source = source.join( pd.Series(talib.CDLUNIQUE3RIVER(open, high, low, close), name='CDLUNIQUE3RIVER')) source = source.join( pd.Series(talib.CDLUPSIDEGAP2CROWS(open, high, low, close), name='CDLUPSIDEGAP2CROWS')) source = source.join( pd.Series(talib.CDLXSIDEGAP3METHODS(open, high, low, close), name='CDLXSIDEGAP3METHODS')) return source
ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLCOUNTERATTACK'] = ta.CDLCOUNTERATTACK( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLDOJI'] = ta.CDLDOJI(ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLDOJISTAR'] = ta.CDLDOJISTAR(ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLENGULFING'] = ta.CDLENGULFING(ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLGAPSIDESIDEWHITE'] = ta.CDLGAPSIDESIDEWHITE( ohlc_df['open'], ohlc_df['high'], ohlc_df['low'], ohlc_df['close']) ohlc_df['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(
def add_ta_features(df, ta_settings): """Add technial analysis features from typical financial dataset that typically include columns such as "open", "high", "low", "price" and "volume". http://mrjbq7.github.io/ta-lib/ Args: df(pandas.DataFrame): original DataFrame. ta_settings(dict): configuration. Returns: pandas.DataFrame: DataFrame with new features included. """ open = df['open'] high = df['high'] low = df['low'] close = df['price'] volume = df['volume'] if ta_settings['overlap']: df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[ 'ta_overlap_bbands_lower'] = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0) df['ta_overlap_dema'] = ta.DEMA( close, timeperiod=15) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30) df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30) df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0) df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close) period = np.random.randint(10, 20, size=len(close)).astype(float) df['ta_overlap_mavp'] = ta.MAVP(close, period, minperiod=2, maxperiod=30, matype=0) df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14) df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14) df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0) df['ta_overlap_sarext'] = ta.SAREXT(high, low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30) df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0) df['ta_overlap_tema'] = ta.TEMA( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30) df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30) # NOTE: Commented to avoid a lot of Nan values # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close) if ta_settings['momentum']: df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14) df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14) df['ta_momentum_apo'] = ta.APO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON( high, low, timeperiod=14) df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14) df['ta_momentum_bop'] = ta.BOP(open, high, low, close) df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14) df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14) df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14) df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[ 'ta_momentum_macd_hist'] = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[ 'ta_momentum_macdext_hist'] = ta.MACDEXT(close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[ 'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9) df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14) df['ta_momentum_minus_di'] = ta.MINUS_DI(high, low, close, timeperiod=14) df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14) df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10) df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14) df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14) df['ta_momentum_ppo'] = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0) df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10) df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10) df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10) df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10) df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14) df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH( high, low, close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF( high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI( close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) df['ta_momentum_trix'] = ta.TRIX( close, timeperiod=12) # NOTE: Changed to avoid a lot of Nan values df['ta_momentum_ultosc'] = ta.ULTOSC(high, low, close, timeperiod1=7, timeperiod2=14, timeperiod3=28) df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14) if ta_settings['volume']: df['ta_volume_ad'] = ta.AD(high, low, close, volume) df['ta_volume_adosc'] = ta.ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10) df['ta_volume_obv'] = ta.OBV(close, volume) if ta_settings['volatility']: df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14) df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14) df['ta_volatility_trange'] = ta.TRANGE(high, low, close) if ta_settings['price']: df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close) df['ta_price_medprice'] = ta.MEDPRICE(high, low) df['ta_price_typprice'] = ta.TYPPRICE(high, low, close) df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close) if ta_settings['cycle']: df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close) df['ta_cycle_ht_phasor_inphase'], df[ 'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close) df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close) # NOTE: Commented to avoid a lot of Nan values # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close) # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close) if ta_settings['pattern']: df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close) df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS( open, high, low, close) df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close) df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE( open, high, low, close) df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close) df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH( open, high, low, close) df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS( open, high, low, close) df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open, high, low, close, penetration=0) df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK( open, high, low, close) df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close) df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close) df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU( open, high, low, close) df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL( open, high, low, close) df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK( open, high, low, close) df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER( open, high, low, close, penetration=0) df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close) df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close) df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI( open, high, low, close) df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close) df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE( open, high, low, close) df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI( open, high, low, close) df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close) df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN( open, high, low, close) df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close) df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS( open, high, low, close) df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close) df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close) df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD( open, high, low, close) df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON( open, high, low, close) df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS( open, high, low, close) df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close) df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER( open, high, low, close) df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close) df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH( open, high, low, close) df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM( open, high, low, close) df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI( open, high, low, close) df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close) df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close) df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW( open, high, low, close) df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open, high, low, close, penetration=0) df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR( open, high, low, close, penetration=0) df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open, high, low, close, penetration=0) df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close) df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close) df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN( open, high, low, close) df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS( open, high, low, close) df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES( open, high, low, close) df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR( open, high, low, close) df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close) df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP( open, high, low, close) df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN( open, high, low, close) df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH( open, high, low, close) df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close) df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close) df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close) df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close) df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER( open, high, low, close) df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS( open, high, low, close) df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS( open, high, low, close) if ta_settings['statistic']: df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5) df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30) df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14) df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close, timeperiod=14) df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT( close, timeperiod=14) df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close, timeperiod=14) df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1) df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14) df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1) if ta_settings['math_transforms']: df['ta_math_transforms_atan'] = ta.ATAN(close) df['ta_math_transforms_ceil'] = ta.CEIL(close) df['ta_math_transforms_cos'] = ta.COS(close) df['ta_math_transforms_floor'] = ta.FLOOR(close) df['ta_math_transforms_ln'] = ta.LN(close) df['ta_math_transforms_log10'] = ta.LOG10(close) df['ta_math_transforms_sin'] = ta.SIN(close) df['ta_math_transforms_sqrt'] = ta.SQRT(close) df['ta_math_transforms_tan'] = ta.TAN(close) if ta_settings['math_operators']: df['ta_math_operators_add'] = ta.ADD(high, low) df['ta_math_operators_div'] = ta.DIV(high, low) df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX( close, timeperiod=30) df['ta_math_operators_minidx'], df[ 'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30) df['ta_math_operators_mult'] = ta.MULT(high, low) df['ta_math_operators_sub'] = ta.SUB(high, low) df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30) return df
def patern(dataframe): """ Pattern Recognition: CDL2CROWS Two Crows CDL3BLACKCROWS Three Black Crows CDL3INSIDE Three Inside Up/Down CDL3LINESTRIKE Three-Line Strike CDL3OUTSIDE Three Outside Up/Down CDL3STARSINSOUTH Three Stars In The South CDL3WHITESOLDIERS Three Advancing White Soldiers CDLABANDONEDBABY Abandoned Baby CDLADVANCEBLOCK Advance Block CDLBELTHOLD Belt-hold CDLBREAKAWAY Breakaway CDLCLOSINGMARUBOZU Closing Marubozu CDLCONCEALBABYSWALL Concealing Baby SwalLow CDLCOUNTERATTACK Counterattack CDLDARKCLOUDCOVER Dark Cloud Cover CDLDOJI Doji CDLDOJISTAR Doji Star CDLDRAGONFLYDOJI Dragonfly Doji CDLENGULFING Engulfing Pattern CDLEVENINGDOJISTAR Evening Doji Star CDLEVENINGSTAR Evening Star CDLGAPSIDESIDEWHITE Up/Down-gap side-by-side white lines CDLGRAVESTONEDOJI Gravestone Doji CDLHAMMER Hammer CDLHANGINGMAN Hanging Man CDLHARAMI Harami Pattern CDLHARAMICROSS Harami Cross Pattern CDLHighWAVE High-Wave Candle CDLHIKKAKE Hikkake Pattern CDLHIKKAKEMOD Modified Hikkake Pattern CDLHOMINGPIGEON Homing Pigeon CDLIDENTICAL3CROWS Identical Three Crows CDLINNECK In-Neck Pattern CDLINVERTEDHAMMER Inverted Hammer CDLKICKING Kicking CDLKICKINGBYLENGTH Kicking - bull/bear determined by the longer marubozu CDLLADDERBOTTOM Ladder Bottom CDLLONGLEGGEDDOJI Long Legged Doji CDLLONGLINE Long Line Candle CDLMARUBOZU Marubozu CDLMATCHINGLow Matching Low CDLMATHOLD Mat Hold CDLMORNINGDOJISTAR Morning Doji Star CDLMORNINGSTAR Morning Star CDLONNECK On-Neck Pattern CDLPIERCING Piercing Pattern CDLRICKSHAWMAN Rickshaw Man CDLRISEFALL3METHODS Rising/Falling Three Methods CDLSEPARATINGLINES Separating Lines CDLSHOOTINGSTAR Shooting Star CDLSHORTLINE Short Line Candle CDLSPINNINGTOP Spinning Top CDLSTALLEDPATTERN Stalled Pattern CDLSTICKSANDWICH Stick Sandwich CDLTAKURI Takuri (Dragonfly Doji with very long Lower shadow) CDLTASUKIGAP Tasuki Gap CDLTHRUSTING Thrusting Pattern CDLTRISTAR Tristar Pattern CDLUNIQUE3RIVER Unique 3 River CDLUPSIDEGAP2CROWS Upside Gap Two Crows CDLXSIDEGAP3METHODS Upside/Downside Gap Three Methods """ #CDL2CROWS - Two Crows df[f'{ratio}_CDL2CROWS'] = talib.CDL2CROWS(Open,High, Low, Close) #CDL2CROWS - Three Black Crows df[f'{ratio}_CDL2CROWS'] = talib.CDL3BLACKCROWS(Open,High, Low, Close) #CDL3INSIDE - Three Inside Up/Down df[f'{ratio}_CDL3INSIDE'] = talib.CDL3INSIDE(Open,High, Low, Close) #CDL3LINESTRIKE - Three-Line Strike df[f'{ratio}_CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE(Open,High, Low, Close) #CDL3OUTSIDE - Three Outside Up/Down df[f'{ratio}_CDL3OUTSIDE'] = talib.CDL3OUTSIDE(Open,High, Low, Close) #CDL3STARSINSOUTH - Three Stars In The South df[f'{ratio}_CDL3STARSINSOUTH'] = talib.CDL3STARSINSOUTH(Open,High, Low, Close) #CDL3WHITESOLDIERS - Three Advancing White Soldiers df[f'{ratio}_CDL3WHITESOLDIERS'] = talib.CDL3WHITESOLDIERS(Open,High, Low, Close) #CDLABANDONEDBABY - Abandoned Baby df[f'{ratio}_CDLABANDONEDBABY'] = talib.CDLABANDONEDBABY(Open,High, Low, Close, penetration=0) #CDLADVANCEBLOCK - Advance Block df[f'{ratio}_CDLADVANCEBLOCK'] = talib.CDLADVANCEBLOCK(Open,High, Low, Close) #CDLBELTHOLD - Belt-hold df[f'{ratio}_CDLBELTHOLD'] = talib.CDLBELTHOLD(Open,High, Low, Close) #CDLBREAKAWAY - Breakaway df[f'{ratio}_CDLBREAKAWAY'] = talib.CDLBREAKAWAY(Open,High, Low, Close) #CDLCLOSINGMARUBOZU - Closing Marubozu df[f'{ratio}_CDLCLOSINGMARUBOZU'] = talib.CDLCLOSINGMARUBOZU(Open,High, Low, Close) #CDLCONCEALBABYSWALL - Concealing Baby SwalLow df[f'{ratio}_CDLCLOSINGMARUBOZU'] = talib.CDLCONCEALBABYSWALL(Open,High, Low, Close) #CDLCOUNTERATTACK - Counterattack df[f'{ratio}_CDLCLOSINGMARUBOZU'] = talib.CDLCOUNTERATTACK(Open,High, Low, Close) #CDLDARKCLOUDCOVER - Dark Cloud Cover df[f'{ratio}_CDLCLOSINGMARUBOZU'] = talib.CDLDARKCLOUDCOVER(Open,High, Low, Close, penetration=0) #CDLDOJI - Doji df[f'{ratio}_CDLDOJI'] = talib.CDLDOJI(Open,High, Low, Close) #CDLDOJISTAR - Doji Star df[f'{ratio}_CDLDOJISTAR'] = talib.CDLDOJISTAR(Open,High, Low, Close) #CDLDRAGONFLYDOJI - Dragonfly Doji df[f'{ratio}_CDLDRAGONFLYDOJI'] = talib.CDLDRAGONFLYDOJI(Open,High, Low, Close) #CDLENGULFING - Engulfing Pattern df[f'{ratio}_CDLENGULFING'] = talib.CDLENGULFING(Open,High, Low, Close) #CDLEVENINGDOJISTAR - Evening Doji Star df[f'{ratio}_CDLEVENINGDOJISTAR'] = talib.CDLEVENINGDOJISTAR(Open,High, Low, Close, penetration=0) #CDLEVENINGSTAR - Evening Star df[f'{ratio}_CDLEVENINGSTAR'] = talib.CDLEVENINGSTAR(Open,High, Low, Close, penetration=0) #CDLGAPSIDESIDEWHITE - Up/Down-gap side-by-side white lines df[f'{ratio}_CDLEVENINGSTAR'] = talib.CDLGAPSIDESIDEWHITE(Open,High, Low, Close) #CDLGRAVESTONEDOJI - Gravestone Doji df[f'{ratio}_CDLGRAVESTONEDOJI'] = talib.CDLGRAVESTONEDOJI(Open,High, Low, Close) #CDLHAMMER - Hammer df[f'{ratio}_CDLGRAVESTONEDOJI'] = talib.CDLHAMMER(Open,High, Low, Close) #CDLHANGINGMAN - Hanging Man df[f'{ratio}_CDLGRAVESTONEDOJI'] = talib.CDLHANGINGMAN(Open,High, Low, Close) #CDLHARAMI - Harami Pattern df[f'{ratio}_CDLGRAVESTONEDOJI'] = talib.CDLHARAMI(Open,High, Low, Close) #CDLHARAMICROSS - Harami Cross Pattern df[f'{ratio}_CDLHARAMICROSS'] = talib.CDLHARAMICROSS(Open,High, Low, Close) #CDLHighWAVE -High-Wave Candle #df[f'{ratio}_CDLHighWAVE'] = talib.CDLHighWAVE(Open,High, Low, Close) #CDLHIKKAKE - Hikkake Pattern df[f'{ratio}_CDLHIKKAKE'] = talib.CDLHIKKAKE(Open,High, Low, Close) #CDLHIKKAKEMOD - Modified Hikkake Pattern df[f'{ratio}_CDLHIKKAKEMOD'] = talib.CDLHIKKAKEMOD(Open,High, Low, Close) #CDLHOMINGPIGEON - Homing Pigeon df[f'{ratio}_CDLHOMINGPIGEON'] = talib.CDLHOMINGPIGEON(Open,High, Low, Close) #CDLIDENTICAL3CROWS - Identical Three Crows df[f'{ratio}_CDLIDENTICAL3CROWS'] = talib.CDLIDENTICAL3CROWS(Open,High, Low, Close) #CDLINNECK - In-Neck Pattern df[f'{ratio}_CDLINNECK'] = talib.CDLINNECK(Open,High, Low, Close) #CDLINVERTEDHAMMER - Inverted Hammer df[f'{ratio}_CDLINVERTEDHAMMER'] = talib.CDLINVERTEDHAMMER(Open,High, Low, Close) #CDLKICKING - Kicking df[f'{ratio}_CDLKICKING'] = talib.CDLKICKING(Open,High, Low, Close) #CDLKICKINGBYLENGTH - Kicking - bull/bear determined by the longer marubozu df[f'{ratio}_CDLKICKINGBYLENGTH'] = talib.CDLKICKINGBYLENGTH(Open,High, Low, Close) #CDLLADDERBOTTOM - Ladder Bottom df[f'{ratio}_CDLLADDERBOTTOM'] = talib.CDLLADDERBOTTOM(Open,High, Low, Close) #CDLLONGLEGGEDDOJI - Long Legged Doji df[f'{ratio}_CDLLONGLEGGEDDOJI'] = talib.CDLLONGLEGGEDDOJI(Open,High, Low, Close) #CDLLONGLINE - Long Line Candle df[f'{ratio}_CDLLONGLINE'] = talib.CDLLONGLINE(Open,High, Low, Close) #CDLMARUBOZU - Marubozu df[f'{ratio}_DLMARUBOZU'] = talib.CDLMARUBOZU(Open,High, Low, Close) #CDLMATCHINGLow - Matching Low #df[f'{ratio}_CDLMATCHINGLow'] = talib.CDLMATCHINGLow(Open,High, Low, Close) #CDLMATHOLD - Mat Hold df[f'{ratio}_CDLMATHOLD'] = talib.CDLMATHOLD(Open,High, Low, Close, penetration=0) #CDLMORNINGDOJISTAR - Morning Doji Star df[f'{ratio}_CDLMORNINGDOJISTAR'] = talib.CDLMORNINGDOJISTAR(Open,High, Low, Close, penetration=0) #CDLMORNINGSTAR - Morning Star df[f'{ratio}_CDLMORNINGSTAR'] = talib.CDLMORNINGSTAR(Open,High, Low, Close, penetration=0) #CDLONNECK - On-Neck Pattern df[f'{ratio}_CDLONNECK'] = talib.CDLONNECK(Open,High, Low, Close) #CDLPIERCING - Piercing Pattern df[f'{ratio}_CDLPIERCING'] = talib.CDLPIERCING(Open,High, Low, Close) #CDLRICKSHAWMAN - Rickshaw Man df[f'{ratio}_CDLRICKSHAWMAN'] = talib.CDLRICKSHAWMAN(Open,High, Low, Close) #CDLRISEFALL3METHODS - Rising/Falling Three Methods df[f'{ratio}_CDLRISEFALL3METHODS'] = talib.CDLRISEFALL3METHODS(Open,High, Low, Close) #CDLSEPARATINGLINES - Separating Lines df[f'{ratio}_CDLSEPARATINGLINES'] = talib.CDLSEPARATINGLINES(Open,High, Low, Close) #CDLSHOOTINGSTAR - Shooting Star df[f'{ratio}_CDLSHOOTINGSTAR'] = talib.CDLSHOOTINGSTAR(Open,High, Low, Close) #CDLSHORTLINE - Short Line Candle df[f'{ratio}_CDLSHORTLINE'] = talib.CDLSHORTLINE(Open,High, Low, Close) #CDLSPINNINGTOP - Spinning Top df[f'{ratio}_CDLSPINNINGTOP'] = talib.CDLSPINNINGTOP(Open,High, Low, Close) #CDLSTALLEDPATTERN - Stalled Pattern df[f'{ratio}_CDLSTALLEDPATTERN'] = talib.CDLSTALLEDPATTERN(Open,High, Low, Close) #CDLSTICKSANDWICH - Stick Sandwich df[f'{ratio}_CDLSTICKSANDWICH'] = talib.CDLSTICKSANDWICH(Open,High, Low, Close) #CDLTAKURI - Takuri (Dragonfly Doji with very long Lower shadow) df[f'{ratio}_CDLTAKURI'] = talib.CDLTAKURI(Open,High, Low, Close) #CDLTASUKIGAP - Tasuki Gap df[f'{ratio}_CDLTASUKIGAP'] = talib.CDLTASUKIGAP(Open,High, Low, Close) #CDLTHRUSTING - Thrusting Pattern df[f'{ratio}_CDLTHRUSTING'] = talib.CDLTHRUSTING(Open,High, Low, Close) #CDLTRISTAR - Tristar Pattern df[f'{ratio}_CDLTRISTAR'] = talib.CDLTRISTAR(Open,High, Low, Close) #CDLUNIQUE3RIVER - Unique 3 River df[f'{ratio}_CDLUNIQUE3RIVER'] = talib.CDLUNIQUE3RIVER(Open,High, Low, Close) #CDLUPSIDEGAP2CROWS - Upside Gap Two Crows df[f'{ratio}_CDLUPSIDEGAP2CROWS'] = talib.CDLUPSIDEGAP2CROWS(Open,High, Low, Close) #CDLXSIDEGAP3METHODS - Upside/Downside Gap Three Methods df[f'{ratio}_CDLXSIDEGAP3METHODS'] = talib.CDLXSIDEGAP3METHODS(Open,High, Low, Close) return patern
def ta(name, price_h, price_l, price_c, price_v, price_o): # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing if name == 'AD': return talib.AD(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'ADOSC': return talib.ADOSC(np.array(price_h), np.array(price_l), np.array(price_c), np.asarray(price_v, dtype='float'), fastperiod=2, slowperiod=10) if name == 'ADX': return talib.ADX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'ADXR': return talib.ADXR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'APO': return talib.APO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'AROON': AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=90) return (AROON_DWON, AROON2_UP) if name == 'AROONOSC': return talib.AROONOSC(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'ATR': return talib.ATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'AVGPRICE': return talib.AVGPRICE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'BBANDS': BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c, dtype='float'), matype=MA_Type.T3) return BBANDS1 if name == 'BETA': return talib.BETA(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=5) if name == 'BOP': return talib.BOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CCI': return talib.CCI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CDL2CROWS': return talib.CDL2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3BLACKCROWS': return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3INSIDE': return talib.CDL3INSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3LINESTRIKE': return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3OUTSIDE': return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3STARSINSOUTH': return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDL3WHITESOLDIERS': return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLABANDONEDBABY': return talib.CDLABANDONEDBABY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLADVANCEBLOCK': return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBELTHOLD': return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLBREAKAWAY': return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCLOSINGMARUBOZU': return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCONCEALBABYSWALL': return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLCOUNTERATTACK': return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDARKCLOUDCOVER': return talib.CDLDARKCLOUDCOVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLDOJI': return talib.CDLDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDOJISTAR': return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLDRAGONFLYDOJI': return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLENGULFING': return talib.CDLENGULFING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLEVENINGDOJISTAR': return talib.CDLEVENINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLEVENINGSTAR': return talib.CDLEVENINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLGAPSIDESIDEWHITE': return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLGRAVESTONEDOJI': return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHAMMER': return talib.CDLHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHANGINGMAN': return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMI': return talib.CDLHARAMI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHARAMICROSS': return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIGHWAVE': return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKE': return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHIKKAKEMOD': return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLHOMINGPIGEON': return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLIDENTICAL3CROWS': return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINNECK': return talib.CDLINNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLINVERTEDHAMMER': return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKING': return talib.CDLKICKING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLKICKINGBYLENGTH': return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLADDERBOTTOM': return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLEGGEDDOJI': return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLLONGLINE': return talib.CDLLONGLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMARUBOZU': return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATCHINGLOW': return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMATHOLD': return talib.CDLMATHOLD(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLMORNINGDOJISTAR': return talib.CDLMORNINGDOJISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLMORNINGSTAR': return talib.CDLMORNINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), penetration=0) if name == 'CDLONNECK': return talib.CDLONNECK(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLPIERCING': return talib.CDLPIERCING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRICKSHAWMAN': return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLRISEFALL3METHODS': return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSEPARATINGLINES': return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHOOTINGSTAR': return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSHORTLINE': return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSPINNINGTOP': return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTALLEDPATTERN': return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLSTICKSANDWICH': return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTAKURI': return talib.CDLTAKURI(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTASUKIGAP': return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTHRUSTING': return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLTRISTAR': return talib.CDLTRISTAR(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUNIQUE3RIVER': return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLUPSIDEGAP2CROWS': return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CDLXSIDEGAP3METHODS': return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'CMO': return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'CORREL': return talib.CORREL(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=30) if name == 'DEMA': return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'DX': return talib.DX(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'EMA': return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'HT_DCPERIOD': return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float')) if name == 'HT_DCPHASE': return talib.HT_DCPHASE(np.asarray(price_c, dtype='float')) if name == 'HT_PHASOR': HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR( np.asarray(price_c, dtype='float') ) # use HT_PHASOR1 for the indication of up and down return HT_PHASOR1 if name == 'HT_SINE': HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float')) return HT_SINE1 if name == 'HT_TRENDLINE': return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float')) if name == 'HT_TRENDMODE': return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float')) if name == 'KAMA': return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'LINEARREG': return talib.LINEARREG(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_ANGLE': return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_INTERCEPT': return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'LINEARREG_SLOPE': return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MA': return talib.MA(np.asarray(price_c, dtype='float'), timeperiod=30, matype=0) if name == 'MACD': MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, signalperiod=9) return MACD1 if nam == 'MACDEXT': return talib.MACDEXT(np.asarray(price_c, dtype='float'), fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) if name == 'MACDFIX': MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c, dtype='float'), signalperiod=9) return MACDFIX1 if name == 'MAMA': MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'), fastlimit=0, slowlimit=0) return MAMA1 if name == 'MEDPRICE': return talib.MEDPRICE(np.array(price_h), np.asarray(price_l, dtype='float')) if name == 'MINUS_DI': return talib.MINUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'MINUS_DM': return talib.MINUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'MOM': return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'NATR': return talib.NATR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'OBV': return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float')) if name == 'PLUS_DI': return talib.PLUS_DI(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'PLUS_DM': return talib.PLUS_DM(np.array(price_h), np.asarray(price_l, dtype='float'), timeperiod=14) if name == 'PPO': return talib.PPO(np.asarray(price_c, dtype='float'), fastperiod=12, slowperiod=26, matype=0) if name == 'ROC': return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCP': return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'ROCR100': return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10) if name == 'RSI': return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'SAR': return talib.SAR(np.array(price_h), np.asarray(price_l, dtype='float'), acceleration=0, maximum=0) if name == 'SAREXT': return talib.SAREXT(np.array(price_h), np.asarray(price_l, dtype='float'), startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) if name == 'SMA': return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'STDDEV': return talib.STDDEV(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'STOCH': STOCH1, STOCH2 = talib.STOCH(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) return STOCH1 if name == 'STOCHF': STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHF1 if name == 'STOCHRSI': STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c, dtype='float'), timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0) return STOCHRSI1 if name == 'T3': return talib.T3(np.asarray(price_c, dtype='float'), timeperiod=5, vfactor=0) if name == 'TEMA': return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRANGE': return talib.TRANGE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'TRIMA': return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TRIX': return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30) if name == 'TSF': return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'TYPPRICE': return talib.TYPPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'ULTOSC': return talib.ULTOSC(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod1=7, timeperiod2=14, timeperiod3=28) if name == 'VAR': return talib.VAR(np.asarray(price_c, dtype='float'), timeperiod=5, nbdev=1) if name == 'WCLPRICE': return talib.WCLPRICE(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float')) if name == 'WILLR': return talib.WILLR(np.array(price_h), np.array(price_l), np.asarray(price_c, dtype='float'), timeperiod=14) if name == 'WMA': return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)
def CDLDRAGONFLYDOJI(DataFrame): res = talib.CDLDRAGONFLYDOJI(DataFrame.open.values, DataFrame.high.values, DataFrame.low.values, DataFrame.close.values) return pd.DataFrame({'CDLDRAGONFLYDOJI': res}, index=DataFrame.index)
def pattern_recognition(candles: np.ndarray, pattern_type, penetration=0, sequential=False) -> Union[int, np.ndarray]: """ Pattern Recognition :param candles: np.ndarray :param penetration: int - default = 0 :param pattern_type: str :param sequential: bool - default=False :return: int | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] if pattern_type == "CDL2CROWS": res = talib.CDL2CROWS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3BLACKCROWS": res = talib.CDL3BLACKCROWS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3INSIDE": res = talib.CDL3INSIDE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3LINESTRIKE": res = talib.CDL3LINESTRIKE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3OUTSIDE": res = talib.CDL3OUTSIDE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3STARSINSOUTH": res = talib.CDL3STARSINSOUTH(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDL3WHITESOLDIERS": res = talib.CDL3WHITESOLDIERS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLABANDONEDBABY": res = talib.CDLABANDONEDBABY(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLADVANCEBLOCK": res = talib.CDLADVANCEBLOCK(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLBELTHOLD": res = talib.CDLBELTHOLD(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLBREAKAWAY": res = talib.CDLBREAKAWAY(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLCLOSINGMARUBOZU": res = talib.CDLCLOSINGMARUBOZU(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLCONCEALBABYSWALL": res = talib.CDLCONCEALBABYSWALL(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLCOUNTERATTACK": res = talib.CDLCOUNTERATTACK(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLDARKCLOUDCOVER": res = talib.CDLDARKCLOUDCOVER(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLDOJI": res = talib.CDLDOJI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLDOJISTAR": res = talib.CDLDOJISTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLDRAGONFLYDOJI": res = talib.CDLDRAGONFLYDOJI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLENGULFING": res = talib.CDLENGULFING(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLEVENINGDOJISTAR": res = talib.CDLEVENINGDOJISTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLEVENINGSTAR": res = talib.CDLEVENINGSTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLGAPSIDESIDEWHITE": res = talib.CDLGAPSIDESIDEWHITE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLGRAVESTONEDOJI": res = talib.CDLGRAVESTONEDOJI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHAMMER": res = talib.CDLHAMMER(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHANGINGMAN": res = talib.CDLHANGINGMAN(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHARAMI": res = talib.CDLHARAMI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHARAMICROSS": res = talib.CDLHARAMICROSS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHIGHWAVE": res = talib.CDLHIGHWAVE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHIKKAKE": res = talib.CDLHIKKAKE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHIKKAKEMOD": res = talib.CDLHIKKAKEMOD(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLHOMINGPIGEON": res = talib.CDLHOMINGPIGEON(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLIDENTICAL3CROWS": res = talib.CDLIDENTICAL3CROWS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLINNECK": res = talib.CDLINNECK(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLINVERTEDHAMMER": res = talib.CDLINVERTEDHAMMER(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLKICKING": res = talib.CDLKICKING(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLKICKINGBYLENGTH": res = talib.CDLKICKINGBYLENGTH(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLLADDERBOTTOM": res = talib.CDLLADDERBOTTOM(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLLONGLEGGEDDOJI": res = talib.CDLLONGLEGGEDDOJI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLLONGLINE": res = talib.CDLLONGLINE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLMARUBOZU": res = talib.CDLMARUBOZU(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLMATCHINGLOW": res = talib.CDLMATCHINGLOW(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLMATHOLD": res = talib.CDLMATHOLD(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLMORNINGDOJISTAR": res = talib.CDLMORNINGDOJISTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLMORNINGSTAR": res = talib.CDLMORNINGSTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2], penetration=penetration) elif pattern_type == "CDLONNECK": res = talib.CDLONNECK(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLPIERCING": res = talib.CDLPIERCING(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLRICKSHAWMAN": res = talib.CDLRICKSHAWMAN(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLRISEFALL3METHODS": res = talib.CDLRISEFALL3METHODS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSEPARATINGLINES": res = talib.CDLSEPARATINGLINES(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSHOOTINGSTAR": res = talib.CDLSHOOTINGSTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSHORTLINE": res = talib.CDLSHORTLINE(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSPINNINGTOP": res = talib.CDLSPINNINGTOP(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSTALLEDPATTERN": res = talib.CDLSTALLEDPATTERN(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLSTICKSANDWICH": res = talib.CDLSTICKSANDWICH(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLTAKURI": res = talib.CDLTAKURI(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLTASUKIGAP": res = talib.CDLTASUKIGAP(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLTHRUSTING": res = talib.CDLTHRUSTING(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLTRISTAR": res = talib.CDLTRISTAR(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLUNIQUE3RIVER": res = talib.CDLUNIQUE3RIVER(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLUPSIDEGAP2CROWS": res = talib.CDLUPSIDEGAP2CROWS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) elif pattern_type == "CDLXSIDEGAP3METHODS": res = talib.CDLXSIDEGAP3METHODS(candles[:, 1], candles[:, 3], candles[:, 4], candles[:, 2]) else: raise ValueError('pattern type string not recognised') return res / 100 if sequential else res[-1] / 100
df['CDL3INSIDE'] = talib.CDL3INSIDE(op, hp, lp, cp) df['CDL3LINESTRIKE'] = talib.CDL3LINESTRIKE(op, hp, lp, cp) df['CDL3OUTSIDE'] = talib.CDL3OUTSIDE(op, hp, lp, cp) df['CDL3STARSINSOUTH'] = talib.CDL3STARSINSOUTH(op, hp, lp, cp) df['CDL3WHITESOLDIERS'] = talib.CDL3WHITESOLDIERS(op, hp, lp, cp) df['CDLABANDONEDBABY'] = talib.CDLABANDONEDBABY(op, hp, lp, cp) df['CDLADVANCEBLOCK'] = talib.CDLADVANCEBLOCK(op, hp, lp, cp) df['CDLBELTHOLD'] = talib.CDLBELTHOLD(op, hp, lp, cp) df['CDLBREAKAWAY'] = talib.CDLBREAKAWAY(op, hp, lp, cp) df['CDLCLOSINGMARUBOZU'] = talib.CDLCLOSINGMARUBOZU(op, hp, lp, cp) df['CDLCONCEALBABYSWALL'] = talib.CDLCONCEALBABYSWALL(op, hp, lp, cp) df['CDLCOUNTERATTACK'] = talib.CDLCOUNTERATTACK(op, hp, lp, cp) df['CDLDARKCLOUDCOVER'] = talib.CDLDARKCLOUDCOVER(op, hp, lp, cp) df['CDLDOJI'] = talib.CDLDOJI(op, hp, lp, cp) df['CDLDOJISTAR'] = talib.CDLDOJISTAR(op, hp, lp, cp) df['CDLDRAGONFLYDOJI'] = talib.CDLDRAGONFLYDOJI(op, hp, lp, cp) df['CDLENGULFING'] = talib.CDLENGULFING(op, hp, lp, cp) df['CDLEVENINGDOJISTAR'] = talib.CDLEVENINGDOJISTAR(op, hp, lp, cp) df['CDLEVENINGSTAR'] = talib.CDLEVENINGSTAR(op, hp, lp, cp) df['CDLGAPSIDESIDEWHITE'] = talib.CDLGAPSIDESIDEWHITE(op, hp, lp, cp) df['CDLGRAVESTONEDOJI'] = talib.CDLGRAVESTONEDOJI(op, hp, lp, cp) df['CDLHAMMER'] = talib.CDLHAMMER(op, hp, lp, cp) df['CDLHANGINGMAN'] = talib.CDLHANGINGMAN(op, hp, lp, cp) df['CDLHARAMI'] = talib.CDLHARAMI(op, hp, lp, cp) df['CDLHARAMICROSS'] = talib.CDLHARAMICROSS(op, hp, lp, cp) df['CDLHIGHWAVE'] = talib.CDLHIGHWAVE(op, hp, lp, cp) df['CDLHIKKAKE'] = talib.CDLHIKKAKE(op, hp, lp, cp) df['CDLHIKKAKEMOD'] = talib.CDLHIKKAKEMOD(op, hp, lp, cp) df['CDLHOMINGPIGEON'] = talib.CDLHOMINGPIGEON(op, hp, lp, cp) df['CDLIDENTICAL3CROWS'] = talib.CDLIDENTICAL3CROWS(op, hp, lp, cp) df['CDLINNECK'] = talib.CDLINNECK(op, hp, lp, cp)
df['Counterattack'] = ta.CDLCOUNTERATTACK(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Dark_Cloud_Cover'] = ta.CDLDARKCLOUDCOVER(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close']), penetration=0) df['Doji'] = ta.CDLDOJI(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Doji_Star'] = ta.CDLDOJISTAR(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Dragonfly_Doji'] = ta.CDLDRAGONFLYDOJI(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Engulfing_Pattern'] = ta.CDLENGULFING(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close'])) df['Evening_Doji_Star'] = ta.CDLEVENINGDOJISTAR(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close']), penetration=0) df['Evening_Star'] = ta.CDLEVENINGSTAR(np.array(df['Open']), np.array(df['High']), np.array(df['Low']), np.array(df['Adj Close']), penetration=0)
def built_in_scanners(ticker="SPY"): data = yf.download(ticker, start="2020-01-01", end=datetime.today().strftime('%Y-%m-%d')) open = data['Open'] high = data['High'] low = data['Low'] close = data['Close'] # The library's functions runs on yesterday's date, so subtract 1 from today's date. current_date = datetime.today() - timedelta(days=1) current_date_formatted = current_date.strftime('%Y-%m-%d') two_crows = talib.CDL2CROWS(open, high, low, close)[current_date_formatted] three_black_crows = talib.CDL3BLACKCROWS(open, high, low, close)[current_date_formatted] three_inside = talib.CDL3INSIDE(open, high, low, close)[current_date_formatted] three_line_strike = talib.CDL3LINESTRIKE(open, high, low, close)[current_date_formatted] three_outside = talib.CDL3OUTSIDE(open, high, low, close)[current_date_formatted] three_stars_in_south = talib.CDL3STARSINSOUTH( open, high, low, close)[current_date_formatted] three_white_soldiers = talib.CDL3WHITESOLDIERS( open, high, low, close)[current_date_formatted] abandoned_baby = talib.CDLABANDONEDBABY(open, high, low, close)[current_date_formatted] advance_block = talib.CDLADVANCEBLOCK(open, high, low, close)[current_date_formatted] belt_hold = talib.CDLBELTHOLD(open, high, low, close)[current_date_formatted] breakaway = talib.CDLBREAKAWAY(open, high, low, close)[current_date_formatted] closing_marubozu = talib.CDLCLOSINGMARUBOZU(open, high, low, close)[current_date_formatted] concealing_baby_swallow = talib.CDLCONCEALBABYSWALL( open, high, low, close)[current_date_formatted] talib.CDLCOUNTERATTACK(open, high, low, close)[current_date_formatted] dark_cloud_cover = talib.CDLDARKCLOUDCOVER( open, high, low, close, penetration=0)[current_date_formatted] doji = talib.CDLDOJI(open, high, low, close)[current_date_formatted] doji_star = talib.CDLDOJISTAR(open, high, low, close)[current_date_formatted] dragonfly_doji = talib.CDLDRAGONFLYDOJI(open, high, low, close)[current_date_formatted] engulfing_candle = talib.CDLENGULFING(open, high, low, close)[current_date_formatted] evening_doji_star = talib.CDLEVENINGDOJISTAR( open, high, low, close, penetration=0)[current_date_formatted] evening_star = talib.CDLEVENINGSTAR(open, high, low, close, penetration=0)[current_date_formatted] gaps = talib.CDLGAPSIDESIDEWHITE(open, high, low, close)[current_date_formatted] gravestone_doji = talib.CDLGRAVESTONEDOJI(open, high, low, close)[current_date_formatted] hammer = talib.CDLHAMMER(open, high, low, close)[current_date_formatted] hanging_man = talib.CDLHANGINGMAN(open, high, low, close)[current_date_formatted] harami = talib.CDLHARAMI(open, high, low, close)[current_date_formatted] harami_cross = talib.CDLHARAMICROSS(open, high, low, close)[current_date_formatted] high_wave = talib.CDLHIGHWAVE( open, high, low, close)[current_date_formatted][talib.CDLHIGHWAVE != 0] hikkake = talib.CDLHIKKAKE(open, high, low, close)[current_date_formatted] hikkakemod = talib.CDLHIKKAKEMOD(open, high, low, close)[current_date_formatted] homing_pigeon = talib.CDLHOMINGPIGEON(open, high, low, close)[current_date_formatted] identical_three_crows = talib.CDLIDENTICAL3CROWS( open, high, low, close)[current_date_formatted] in_neck = talib.CDLINNECK(open, high, low, close)[current_date_formatted] inverted_hammer = talib.CDLINVERTEDHAMMER(open, high, low, close)[current_date_formatted] kicking = talib.CDLKICKING(open, high, low, close)[current_date_formatted] kicking_by_length = talib.CDLKICKINGBYLENGTH(open, high, low, close)[current_date_formatted] ladder_bottom = talib.CDLLADDERBOTTOM(open, high, low, close)[current_date_formatted] long_legged_doji = talib.CDLLONGLEGGEDDOJI(open, high, low, close)[current_date_formatted] long_line = talib.CDLLONGLINE(open, high, low, close)[current_date_formatted] marubozu = talib.CDLMARUBOZU(open, high, low, close)[current_date_formatted] matching_low = talib.CDLMATCHINGLOW(open, high, low, close)[current_date_formatted] mat_hold = talib.CDLMATHOLD(open, high, low, close, penetration=0)[current_date_formatted] morning_doji_star = talib.CDLMORNINGDOJISTAR( open, high, low, close, penetration=0)[current_date_formatted] morning_star = talib.CDLMORNINGSTAR(open, high, low, close, penetration=0)[current_date_formatted] on_neck = talib.CDLONNECK(open, high, low, close)[current_date_formatted] piercing = talib.CDLPIERCING(open, high, low, close)[current_date_formatted] rickshawman = talib.CDLRICKSHAWMAN(open, high, low, close)[current_date_formatted] rise_fall_3_methods = talib.CDLRISEFALL3METHODS( open, high, low, close)[current_date_formatted] separating_lines = talib.CDLSEPARATINGLINES(open, high, low, close)[current_date_formatted] shooting_star = talib.CDLSHOOTINGSTAR(open, high, low, close)[current_date_formatted] shortline = talib.CDLSHORTLINE(open, high, low, close)[current_date_formatted] spinning_top = talib.CDLSPINNINGTOP(open, high, low, close)[current_date_formatted] stalled_pattern = talib.CDLSTALLEDPATTERN(open, high, low, close)[current_date_formatted] stick_sandwich = talib.CDLSTICKSANDWICH(open, high, low, close)[current_date_formatted] takuri = talib.CDLTAKURI(open, high, low, close)[current_date_formatted] tasuki_gap = talib.CDLTASUKIGAP(open, high, low, close)[current_date_formatted] thrusting = talib.CDLTHRUSTING(open, high, low, close)[current_date_formatted] tristar = talib.CDLTRISTAR(open, high, low, close)[current_date_formatted] unique_three_river = talib.CDLUNIQUE3RIVER(open, high, low, close)[current_date_formatted] upside_gap_two_crows = talib.CDLUPSIDEGAP2CROWS( open, high, low, close)[current_date_formatted] upside_downside_gap_three_methods = talib.CDLXSIDEGAP3METHODS( open, high, low, close)[current_date_formatted] patterns = list(vars().keys())[7:] values = list(vars().values())[7:] for index in range(0, len(patterns)): if (values[index] != 0): print(patterns[index]) print(values[index])
def TALIB_CDLDRAGONFLYDOJI(close): '''00415,1,1''' return talib.CDLDRAGONFLYDOJI(close)
hovertext=[ "日付:{}".format(data.loc[i, "日付"]) for i in range(day, len(dfs)) ], #hoverinfo = "text", ), #row = 1, #col = 1, ) data['丸坊主'] = ta.CDLMARUBOZU(data['始値'], data['高値'], data['安値'], data['終値']) * data['高値'] / 100 #data['Engulfing_Pattern'] = ta.CDLENGULFING(data['始値'],data['高値'],data['安値'],data['終値']) * data['終値'] / 100 data['カラカサ線'] = ta.CDLHAMMER(data['始値'], data['高値'], data['安値'], data['終値']) * data['高値'] / 100 data['トンボ'] = ta.CDLDRAGONFLYDOJI(data['始値'], data['高値'], data['安値'], data['終値']) * data['高値'] / 100 pattern_list = list(data.loc[:, '丸坊主':'トンボ'].columns) label_list = [m + '_label' for m in list(data.loc[:, '丸坊主':'トンボ'].columns)] data[pattern_list] = data[pattern_list].where(~(data[pattern_list] == 0.0), np.nan) # 売り買いラベルの作成 data[label_list] = data[pattern_list] data[label_list] = data[label_list].where(~(data[label_list] > 0), 1) data[label_list] = data[label_list].where(~(data[label_list] < 0), -1) data[label_list] = data[label_list].where(~(data[label_list] == 1), 'b') data[label_list] = data[label_list].where(~(data[label_list] == -1), 's') # 発生価格の絶対値化 data[pattern_list] = data[pattern_list].abs()
def calculate(self, para): self.t = self.inputdata[:, 0] self.op = self.inputdata[:, 1] self.high = self.inputdata[:, 2] self.low = self.inputdata[:, 3] self.close = self.inputdata[:, 4] #adjusted close self.close1 = self.inputdata[:, 5] self.volume = self.inputdata[:, 6] #Overlap study #Overlap Studies #Overlap Studies if para is 'BBANDS': #Bollinger Bands upperband, middleband, lowerband = ta.BBANDS(self.close, timeperiod=self.tp, nbdevup=2, nbdevdn=2, matype=0) self.output = [upperband, middleband, lowerband] elif para is 'DEMA': #Double Exponential Moving Average self.output = ta.DEMA(self.close, timeperiod=self.tp) elif para is 'EMA': #Exponential Moving Average self.output = ta.EMA(self.close, timeperiod=self.tp) elif para is 'HT_TRENDLINE': #Hilbert Transform - Instantaneous Trendline self.output = ta.HT_TRENDLINE(self.close) elif para is 'KAMA': #Kaufman Adaptive Moving Average self.output = ta.KAMA(self.close, timeperiod=self.tp) elif para is 'MA': #Moving average self.output = ta.MA(self.close, timeperiod=self.tp, matype=0) elif para is 'MAMA': #MESA Adaptive Moving Average mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0) elif para is 'MAVP': #Moving average with variable period self.output = ta.MAVP(self.close, periods=10, minperiod=self.tp, maxperiod=self.tp1, matype=0) elif para is 'MIDPOINT': #MidPoint over period self.output = ta.MIDPOINT(self.close, timeperiod=self.tp) elif para is 'MIDPRICE': #Midpoint Price over period self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp) elif para is 'SAR': #Parabolic SAR self.output = ta.SAR(self.high, self.low, acceleration=0, maximum=0) elif para is 'SAREXT': #Parabolic SAR - Extended self.output = ta.SAREXT(self.high, self.low, startvalue=0, offsetonreverse=0, accelerationinitlong=0, accelerationlong=0, accelerationmaxlong=0, accelerationinitshort=0, accelerationshort=0, accelerationmaxshort=0) elif para is 'SMA': #Simple Moving Average self.output = ta.SMA(self.close, timeperiod=self.tp) elif para is 'T3': #Triple Exponential Moving Average (T3) self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0) elif para is 'TEMA': #Triple Exponential Moving Average self.output = ta.TEMA(self.close, timeperiod=self.tp) elif para is 'TRIMA': #Triangular Moving Average self.output = ta.TRIMA(self.close, timeperiod=self.tp) elif para is 'WMA': #Weighted Moving Average self.output = ta.WMA(self.close, timeperiod=self.tp) #Momentum Indicators elif para is 'ADX': #Average Directional Movement Index self.output = ta.ADX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'ADXR': #Average Directional Movement Index Rating self.output = ta.ADXR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'APO': #Absolute Price Oscillator self.output = ta.APO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'AROON': #Aroon aroondown, aroonup = ta.AROON(self.high, self.low, timeperiod=self.tp) self.output = [aroondown, aroonup] elif para is 'AROONOSC': #Aroon Oscillator self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp) elif para is 'BOP': #Balance Of Power self.output = ta.BOP(self.op, self.high, self.low, self.close) elif para is 'CCI': #Commodity Channel Index self.output = ta.CCI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'CMO': #Chande Momentum Oscillator self.output = ta.CMO(self.close, timeperiod=self.tp) elif para is 'DX': #Directional Movement Index self.output = ta.DX(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MACD': #Moving Average Convergence/Divergence macd, macdsignal, macdhist = ta.MACD(self.close, fastperiod=12, slowperiod=26, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MACDEXT': #MACD with controllable MA type macd, macdsignal, macdhist = ta.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0) self.output = [macd, macdsignal, macdhist] elif para is 'MACDFIX': #Moving Average Convergence/Divergence Fix 12/26 macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9) self.output = [macd, macdsignal, macdhist] elif para is 'MFI': #Money Flow Index self.output = ta.MFI(self.high, self.low, self.close, self.volume, timeperiod=self.tp) elif para is 'MINUS_DI': #Minus Directional Indicator self.output = ta.MINUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'MINUS_DM': #Minus Directional Movement self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'MOM': #Momentum self.output = ta.MOM(self.close, timeperiod=10) elif para is 'PLUS_DI': #Plus Directional Indicator self.output = ta.PLUS_DI(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'PLUS_DM': #Plus Directional Movement self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp) elif para is 'PPO': #Percentage Price Oscillator self.output = ta.PPO(self.close, fastperiod=12, slowperiod=26, matype=0) elif para is 'ROC': #Rate of change : ((price/prevPrice)-1)*100 self.output = ta.ROC(self.close, timeperiod=10) elif para is 'ROCP': #Rate of change Percentage: (price-prevPrice)/prevPrice self.output = ta.ROCP(self.close, timeperiod=10) elif para is 'ROCR': #Rate of change ratio: (price/prevPrice) self.output = ta.ROCR(self.close, timeperiod=10) elif para is 'ROCR100': #Rate of change ratio 100 scale: (price/prevPrice)*100 self.output = ta.ROCR100(self.close, timeperiod=10) elif para is 'RSI': #Relative Strength Index self.output = ta.RSI(self.close, timeperiod=self.tp) elif para is 'STOCH': #Stochastic slowk, slowd = ta.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) self.output = [slowk, slowd] elif para is 'STOCHF': #Stochastic Fast fastk, fastd = ta.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'STOCHRSI': #Stochastic Relative Strength Index fastk, fastd = ta.STOCHRSI(self.close, timeperiod=self.tp, fastk_period=5, fastd_period=3, fastd_matype=0) self.output = [fastk, fastd] elif para is 'TRIX': #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA self.output = ta.TRIX(self.close, timeperiod=self.tp) elif para is 'ULTOSC': #Ultimate Oscillator self.output = ta.ULTOSC(self.high, self.low, self.close, timeperiod1=self.tp, timeperiod2=self.tp1, timeperiod3=self.tp2) elif para is 'WILLR': #Williams' %R self.output = ta.WILLR(self.high, self.low, self.close, timeperiod=self.tp) # Volume Indicators : # elif para is 'AD': #Chaikin A/D Line self.output = ta.AD(self.high, self.low, self.close, self.volume) elif para is 'ADOSC': #Chaikin A/D Oscillator self.output = ta.ADOSC(self.high, self.low, self.close, self.volume, fastperiod=3, slowperiod=10) elif para is 'OBV': #On Balance Volume self.output = ta.OBV(self.close, self.volume) # Volatility Indicators: # elif para is 'ATR': #Average True Range self.output = ta.ATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'NATR': #Normalized Average True Range self.output = ta.NATR(self.high, self.low, self.close, timeperiod=self.tp) elif para is 'TRANGE': #True Range self.output = ta.TRANGE(self.high, self.low, self.close) #Price Transform : # elif para is 'AVGPRICE': #Average Price self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close) elif para is 'MEDPRICE': #Median Price self.output = ta.MEDPRICE(self.high, self.low) elif para is 'TYPPRICE': #Typical Price self.output = ta.TYPPRICE(self.high, self.low, self.close) elif para is 'WCLPRICE': #Weighted Close Price self.output = ta.WCLPRICE(self.high, self.low, self.close) #Cycle Indicators : # elif para is 'HT_DCPERIOD': #Hilbert Transform - Dominant Cycle Period self.output = ta.HT_DCPERIOD(self.close) elif para is 'HT_DCPHASE': #Hilbert Transform - Dominant Cycle Phase self.output = ta.HT_DCPHASE(self.close) elif para is 'HT_PHASOR': #Hilbert Transform - Phasor Components inphase, quadrature = ta.HT_PHASOR(self.close) self.output = [inphase, quadrature] elif para is 'HT_SINE': #Hilbert Transform - SineWave #2 sine, leadsine = ta.HT_SINE(self.close) self.output = [sine, leadsine] elif para is 'HT_TRENDMODE': #Hilbert Transform - Trend vs Cycle Mode self.integer = ta.HT_TRENDMODE(self.close) #Pattern Recognition : # elif para is 'CDL2CROWS': #Two Crows self.integer = ta.CDL2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3BLACKCROWS': #Three Black Crows self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low, self.close) elif para is 'CDL3INSIDE': #Three Inside Up/Down self.integer = ta.CDL3INSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3LINESTRIKE': #Three-Line Strike self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low, self.close) elif para is 'CDL3OUTSIDE': #Three Outside Up/Down self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low, self.close) elif para is 'CDL3STARSINSOUTH': #Three Stars In The South self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low, self.close) elif para is 'CDL3WHITESOLDIERS': #Three Advancing White Soldiers self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low, self.close) elif para is 'CDLABANDONEDBABY': #Abandoned Baby self.integer = ta.CDLABANDONEDBABY(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLBELTHOLD': #Belt-hold self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low, self.close) elif para is 'CDLBREAKAWAY': #Breakaway self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low, self.close) elif para is 'CDLCLOSINGMARUBOZU': #Closing Marubozu self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLCONCEALBABYSWALL': #Concealing Baby Swallow self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low, self.close) elif para is 'CDLCOUNTERATTACK': #Counterattack self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low, self.close) elif para is 'CDLDARKCLOUDCOVER': #Dark Cloud Cover self.integer = ta.CDLDARKCLOUDCOVER(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLDOJI': #Doji self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLDOJISTAR': #Doji Star self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLDRAGONFLYDOJI': #Dragonfly Doji self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLENGULFING': #Engulfing Pattern self.integer = ta.CDLENGULFING(self.op, self.high, self.low, self.close) elif para is 'CDLEVENINGDOJISTAR': #Evening Doji Star self.integer = ta.CDLEVENINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLEVENINGSTAR': #Evening Star self.integer = ta.CDLEVENINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLGAPSIDESIDEWHITE': #Up/Down-gap side-by-side white lines self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low, self.close) elif para is 'CDLGRAVESTONEDOJI': #Gravestone Doji self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLHAMMER': #Hammer self.integer = ta.CDLHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLHANGINGMAN': #Hanging Man self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMI': #Harami Pattern self.integer = ta.CDLHARAMI(self.op, self.high, self.low, self.close) elif para is 'CDLHARAMICROSS': #Harami Cross Pattern self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low, self.close) elif para is 'CDLHIGHWAVE': #High-Wave Candle self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKE': #Hikkake Pattern self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low, self.close) elif para is 'CDLHIKKAKEMOD': #Modified Hikkake Pattern self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low, self.close) elif para is 'CDLHOMINGPIGEON': #Homing Pigeon self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low, self.close) elif para is 'CDLIDENTICAL3CROWS': #Identical Three Crows self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLINNECK': #In-Neck Pattern self.integer = ta.CDLINNECK(self.op, self.high, self.low, self.close) elif para is 'CDLINVERTEDHAMMER': #Inverted Hammer self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low, self.close) elif para is 'CDLKICKING': #Kicking self.integer = ta.CDLKICKING(self.op, self.high, self.low, self.close) elif para is 'CDLKICKINGBYLENGTH': #Kicking - bull/bear determined by the longer marubozu self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low, self.close) elif para is 'CDLLADDERBOTTOM': #Ladder Bottom self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLEGGEDDOJI': #Long Legged Doji self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low, self.close) elif para is 'CDLLONGLINE': #Long Line Candle self.integer = ta.CDLLONGLINE(self.op, self.high, self.low, self.close) elif para is 'CDLMARUBOZU': #Marubozu self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low, self.close) elif para is 'CDLMATCHINGLOW': #Matching Low self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low, self.close) elif para is 'CDLMATHOLD': #Mat Hold self.integer = ta.CDLMATHOLD(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGDOJISTAR': #Morning Doji Star self.integer = ta.CDLMORNINGDOJISTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLMORNINGSTAR': #Morning Star self.integer = ta.CDLMORNINGSTAR(self.op, self.high, self.low, self.close, penetration=0) elif para is 'CDLONNECK': #On-Neck Pattern self.integer = ta.CDLONNECK(self.op, self.high, self.low, self.close) elif para is 'CDLPIERCING': #Piercing Pattern self.integer = ta.CDLPIERCING(self.op, self.high, self.low, self.close) elif para is 'CDLRICKSHAWMAN': #Rickshaw Man self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low, self.close) elif para is 'CDLRISEFALL3METHODS': #Rising/Falling Three Methods self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low, self.close) elif para is 'CDLSEPARATINGLINES': #Separating Lines self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low, self.close) elif para is 'CDLSHOOTINGSTAR': #Shooting Star self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low, self.close) elif para is 'CDLSHORTLINE': #Short Line Candle self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low, self.close) elif para is 'CDLSPINNINGTOP': #Spinning Top self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low, self.close) elif para is 'CDLSTALLEDPATTERN': #Stalled Pattern self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low, self.close) elif para is 'CDLSTICKSANDWICH': #Stick Sandwich self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low, self.close) elif para is 'CDLTAKURI': #Takuri (Dragonfly Doji with very long lower shadow) self.integer = ta.CDLTAKURI(self.op, self.high, self.low, self.close) elif para is 'CDLTASUKIGAP': #Tasuki Gap self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low, self.close) elif para is 'CDLTHRUSTING': #Thrusting Pattern self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low, self.close) elif para is 'CDLTRISTAR': #Tristar Pattern self.integer = ta.CDLTRISTAR(self.op, self.high, self.low, self.close) elif para is 'CDLUNIQUE3RIVER': #Unique 3 River self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low, self.close) elif para is 'CDLUPSIDEGAP2CROWS': #Upside Gap Two Crows self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low, self.close) elif para is 'CDLXSIDEGAP3METHODS': #Upside/Downside Gap Three Methods self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low, self.close) #Statistic Functions : # elif para is 'BETA': #Beta self.output = ta.BETA(self.high, self.low, timeperiod=5) elif para is 'CORREL': #Pearson's Correlation Coefficient (r) self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp) elif para is 'LINEARREG': #Linear Regression self.output = ta.LINEARREG(self.close, timeperiod=self.tp) elif para is 'LINEARREG_ANGLE': #Linear Regression Angle self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp) elif para is 'LINEARREG_INTERCEPT': #Linear Regression Intercept self.output = ta.LINEARREG_INTERCEPT(self.close, timeperiod=self.tp) elif para is 'LINEARREG_SLOPE': #Linear Regression Slope self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp) elif para is 'STDDEV': #Standard Deviation self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1) elif para is 'TSF': #Time Series Forecast self.output = ta.TSF(self.close, timeperiod=self.tp) elif para is 'VAR': #Variance self.output = ta.VAR(self.close, timeperiod=5, nbdev=1) else: print('You issued command:' + para)
def technical(df): open = df['open'].values close = df['close'].values high = df['high'].values low = df['low'].values volume = df['volume'].values # define the technical analysis matrix retn = np.array([ tb.MA(close, timeperiod=60), # 1 tb.MA(close, timeperiod=120), # 2 tb.ADX(high, low, close, timeperiod=14), # 3 tb.ADXR(high, low, close, timeperiod=14), # 4 tb.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9)[0], # 5 tb.RSI(close, timeperiod=14), # 6 tb.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0], # 7 tb.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1], # 8 tb.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2], # 9 tb.AD(high, low, close, volume), # 10 tb.ATR(high, low, close, timeperiod=14), # 11 tb.HT_DCPERIOD(close), # 12 tb.CDL2CROWS(open, high, low, close), # 13 tb.CDL3BLACKCROWS(open, high, low, close), # 14 tb.CDL3INSIDE(open, high, low, close), # 15 tb.CDL3LINESTRIKE(open, high, low, close), # 16 tb.CDL3OUTSIDE(open, high, low, close), # 17 tb.CDL3STARSINSOUTH(open, high, low, close), # 18 tb.CDL3WHITESOLDIERS(open, high, low, close), # 19 tb.CDLABANDONEDBABY(open, high, low, close, penetration=0), # 20 tb.CDLADVANCEBLOCK(open, high, low, close), # 21 tb.CDLBELTHOLD(open, high, low, close), # 22 tb.CDLBREAKAWAY(open, high, low, close), # 23 tb.CDLCLOSINGMARUBOZU(open, high, low, close), # 24 tb.CDLCONCEALBABYSWALL(open, high, low, close), # 25 tb.CDLCOUNTERATTACK(open, high, low, close), # 26 tb.CDLDARKCLOUDCOVER(open, high, low, close, penetration=0), # 27 tb.CDLDOJI(open, high, low, close), # 28 tb.CDLDOJISTAR(open, high, low, close), # 29 tb.CDLDRAGONFLYDOJI(open, high, low, close), # 30 tb.CDLENGULFING(open, high, low, close), # 31 tb.CDLEVENINGDOJISTAR(open, high, low, close, penetration=0), # 32 tb.CDLEVENINGSTAR(open, high, low, close, penetration=0), # 33 tb.CDLGAPSIDESIDEWHITE(open, high, low, close), # 34 tb.CDLGRAVESTONEDOJI(open, high, low, close), # 35 tb.CDLHAMMER(open, high, low, close), # 36 tb.CDLHANGINGMAN(open, high, low, close), # 37 tb.CDLHARAMI(open, high, low, close), # 38 tb.CDLHARAMICROSS(open, high, low, close), # 39 tb.CDLHIGHWAVE(open, high, low, close), # 40 tb.CDLHIKKAKE(open, high, low, close), # 41 tb.CDLHIKKAKEMOD(open, high, low, close), # 42 tb.CDLHOMINGPIGEON(open, high, low, close), # 43 tb.CDLIDENTICAL3CROWS(open, high, low, close), # 44 tb.CDLINNECK(open, high, low, close), # 45 tb.CDLINVERTEDHAMMER(open, high, low, close), # 46 tb.CDLKICKING(open, high, low, close), # 47 tb.CDLKICKINGBYLENGTH(open, high, low, close), # 48 tb.CDLLADDERBOTTOM(open, high, low, close), # 49 tb.CDLLONGLEGGEDDOJI(open, high, low, close), # 50 tb.CDLLONGLINE(open, high, low, close), # 51 tb.CDLMARUBOZU(open, high, low, close), # 52 tb.CDLMATCHINGLOW(open, high, low, close), # 53 tb.CDLMATHOLD(open, high, low, close, penetration=0), # 54 tb.CDLMORNINGDOJISTAR(open, high, low, close, penetration=0), # 55 tb.CDLMORNINGSTAR(open, high, low, close, penetration=0), # 56 tb.CDLONNECK(open, high, low, close), # 57 tb.CDLPIERCING(open, high, low, close), # 58 tb.CDLRICKSHAWMAN(open, high, low, close), # 59 tb.CDLRISEFALL3METHODS(open, high, low, close), # 60 tb.CDLSEPARATINGLINES(open, high, low, close), # 61 tb.CDLSHOOTINGSTAR(open, high, low, close), # 62 tb.CDLSHORTLINE(open, high, low, close), # 63 tb.CDLSPINNINGTOP(open, high, low, close), # 64 tb.CDLSTALLEDPATTERN(open, high, low, close), # 65 tb.CDLSTICKSANDWICH(open, high, low, close), # 66 tb.CDLTAKURI(open, high, low, close), # 67 tb.CDLTASUKIGAP(open, high, low, close), # 68 tb.CDLTHRUSTING(open, high, low, close), # 69 tb.CDLTRISTAR(open, high, low, close), # 70 tb.CDLUNIQUE3RIVER(open, high, low, close), # 71 tb.CDLUPSIDEGAP2CROWS(open, high, low, close), # 72 tb.CDLXSIDEGAP3METHODS(open, high, low, close) # 73 ]).T return retn
def two_type(data,example): close = data['close'] high = data['high'] low = data['low'] open = data['open'] #用CDLBELTHO/D进行测试 t1 = np.array(tl.CDLHIGHWAVE(open,high,low,close)) t2 = np.array(tl.CDLHANGINGMAN(open,high,low,close)) t3 = np.array(tl.CDLDRAGONFLYDOJI(open,high,low,close)) t4 = np.array(tl.CDLHARAMICROSS (open,high,low,close)) #t4 = np.minimum(t4,0) t5= np.array(tl.CDLDARKCLOUDCOVER (open,high,low,close)) test = t1+t2+t3+t5+t4 cash = [500000] hold_position = [0] days = int(data.count()['amount']) #画出信号发出时间点 sig_time = {'time':[],'state':[]} price = data['close'] high = np.max(close) for item in range(0,days): #没有日内交易 if item == 0: continue #print(item,len(hold_position)) BuyorSell = test[item-1] if BuyorSell == 100 and hold_position[item-1] ==0: num_of_shares = int(cash[item-1]/open[item]) hold_position.append(num_of_shares) print('%s Buying %s shares of stock' %(data.index[item],num_of_shares)) cash.append(cash[item-1]-num_of_shares*close[item-1]) #添加做多标记 sig_time['time'].append(pd.DataFrame([high+0.5,0],[price.index[item],price.index[item]])) sig_time['state'].append('r') elif BuyorSell == -100 and hold_position[item-1] > 0: #没有做空交易 print('%s Selling %s shares of stock' %(data.index[item],hold_position[item-1])) cash_0 = hold_position[item-1]*open[item] cash.append(cash_0+cash[item-1]) hold_position.append(0) #添加做空标记 sig_time['time'].append(pd.DataFrame([price.max()+0.5,0],[price.index[item],price.index[item]])) sig_time['state'].append('b--') else: cash.append(cash[item-1]) hold_position.append(hold_position[item-1]) stock = np.multiply(hold_position,close) asset = cash+stock price = data['close'] print('Code: ', example,' is tested.') plt.figure(dpi=64,figsize=(30,20)) plt.ylim(price.min()-0.5,price.max()+0.5) plt.plot(price,'k-', markerfacecolor='blue',markersize=12) #plt.plot(test/5) #绘制操作信号时间点 for i in range(len(sig_time['time'])): plt.plot(sig_time['time'][i],sig_time['state'][i]) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.savefig('fig/MIN1.1-6.1/'+str(example)+'.png') plt.show() test = np.array(test) print(np.count_nonzero(test)) return asset
def _extract_feature(candle, params, candle_type, target_dt): ''' 前に余分に必要なデータ量: {(stockf_fastk_period_l + stockf_fastk_period_l) * 最大分足 (min)} + window_size = (12 + 12) * 5 + 5 = 125 (min) ''' o = candle.open h = candle.high l = candle.low c = candle.close v = candle.volume # OHLCV features = pd.DataFrame() features['open'] = o features['high'] = h features['low'] = l features['close'] = c features['volume'] = v #################################### # # Momentum Indicator Functions # #################################### # ADX = SUM((+DI - (-DI)) / (+DI + (-DI)), N) / N # N — 計算期間 # SUM (..., N) — N期間の合計 # +DI — プラスの価格変動の値(positive directional index) # -DI — マイナスの価格変動の値(negative directional index) # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 features['adx_s'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_s']) features['adx_m'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_m']) features['adx_l'] = ta.ADX(h, l, c, timeperiod=params['adx_timeperiod_l']) features['adxr_s'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_s']) features['adxr_m'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_m']) features['adxr_l'] = ta.ADXR(h, l, c, timeperiod=params['adxr_timeperiod_l']) # APO = Shorter Period EMA – Longer Period EMA features['apo_s'] = ta.APO(c, fastperiod=params['apo_fastperiod_s'], slowperiod=params['apo_slowperiod_s'], matype=ta.MA_Type.EMA) features['apo_m'] = ta.APO(c, fastperiod=params['apo_fastperiod_m'], slowperiod=params['apo_slowperiod_m'], matype=ta.MA_Type.EMA) # AroonUp = (N - 過去N日間の最高値からの経過期間) ÷ N × 100 # AroonDown = (N - 過去N日間の最安値からの経過期間) ÷ N × 100 # aroon_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 #features['aroondown_s'], features['aroonup_s'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_s']) #features['aroondown_m'], features['aroonup_m'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_m']) #features['aroondown_l'], features['aroonup_l'] = ta.AROON(h, l, timeperiod=params['aroon_timeperiod_l']) # Aronnオシレーター = AroonUp - AroonDown # aroonosc_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 features['aroonosc_s'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_s']) features['aroonosc_m'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_m']) features['aroonosc_l'] = ta.AROONOSC(h, l, timeperiod=params['aroonosc_timeperiod_l']) # BOP = (close - open) / (high - low) features['bop'] = ta.BOP(o, h, l, c) # CCI = (TP - MA) / (0.015 * MD) # TP: (高値+安値+終値) / 3 # MA: TPの移動平均 # MD: 平均偏差 = ((MA - TP1) + (MA - TP2) + ...) / N features['cci_s'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_s']) features['cci_m'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_m']) features['cci_l'] = ta.CCI(h, l, c, timeperiod=params['cci_timeperiod_l']) # CMO - Chande Momentum Oscillator #features['cmo_s'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_s']) #features['cmo_m'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_m']) #features['cmo_l'] = ta.CMO(c, timeperiod=params['cmo_timeperiod_l']) # DX - Directional Movement Index features['dx_s'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_s']) features['dx_m'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_m']) features['dx_l'] = ta.DX(h, l, c, timeperiod=params['dx_timeperiod_l']) # MACD=基準線-相対線 # 基準線(EMA):過去12日(週・月)間の終値指数平滑平均 # 相対線(EMA):過去26日(週・月)間の終値指数平滑平均 # https://www.sevendata.co.jp/shihyou/technical/macd.html # macd_slowperiod_m = 30 の場合30分足で((30 + macd_signalperiod_m) * 30)/ 60 = 16.5時間必要(macd_signalperiod_m=3の時) macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_s'], slowperiod=params['macd_slowperiod_s'], signalperiod=params['macd_signalperiod_s'], fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA, signalmatype=ta.MA_Type.EMA) change_macd = calc_change(macd, macdsignal) change_macd.index = macd.index features['macd_s'] = macd features['macdsignal_s'] = macdsignal features['macdhist_s'] = macdhist features['change_macd_s'] = change_macd macd, macdsignal, macdhist = ta.MACDEXT(c, fastperiod=params['macd_fastperiod_m'], slowperiod=params['macd_slowperiod_m'], signalperiod=params['macd_signalperiod_m'], fastmatype=ta.MA_Type.EMA, slowmatype=ta.MA_Type.EMA, signalmatype=ta.MA_Type.EMA) change_macd = calc_change(macd, macdsignal) change_macd.index = macd.index features['macd_m'] = macd features['macdsignal_m'] = macdsignal features['macdhist_m'] = macdhist features['change_macd_m'] = change_macd # MFI - Money Flow Index features['mfi_s'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_s']) features['mfi_m'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_m']) features['mfi_l'] = ta.MFI(h, l, c, v, timeperiod=params['mfi_timeperiod_l']) # MINUS_DI - Minus Directional Indicator features['minus_di_s'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_s']) features['minus_di_m'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_m']) features['minus_di_l'] = ta.MINUS_DI(h, l, c, timeperiod=params['minus_di_timeperiod_l']) # MINUS_DM - Minus Directional Movement features['minus_dm_s'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_s']) features['minus_dm_m'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_m']) features['minus_dm_l'] = ta.MINUS_DM(h, l, timeperiod=params['minus_dm_timeperiod_l']) # MOM - Momentum features['mom_s'] = ta.MOM(c, timeperiod=params['mom_timeperiod_s']) features['mom_m'] = ta.MOM(c, timeperiod=params['mom_timeperiod_m']) features['mom_l'] = ta.MOM(c, timeperiod=params['mom_timeperiod_l']) # PLUS_DI - Minus Directional Indicator features['plus_di_s'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_s']) features['plus_di_m'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_m']) features['plus_di_l'] = ta.PLUS_DI(h, l, c, timeperiod=params['plus_di_timeperiod_l']) # PLUS_DM - Minus Directional Movement features['plus_dm_s'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_s']) features['plus_dm_m'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_m']) features['plus_dm_l'] = ta.PLUS_DM(h, l, timeperiod=params['plus_dm_timeperiod_l']) # PPO - Percentage Price Oscillator #features['ppo_s'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_s'], slowperiod=params['ppo_slowperiod_s'], matype=ta.MA_Type.EMA) #features['ppo_m'] = ta.PPO(c, fastperiod=params['ppo_fastperiod_m'], slowperiod=params['ppo_slowperiod_m'], matype=ta.MA_Type.EMA) # ROC - Rate of change : ((price/prevPrice)-1)*100 features['roc_s'] = ta.ROC(c, timeperiod=params['roc_timeperiod_s']) features['roc_m'] = ta.ROC(c, timeperiod=params['roc_timeperiod_m']) features['roc_l'] = ta.ROC(c, timeperiod=params['roc_timeperiod_l']) # ROCP = (price-prevPrice) / prevPrice # http://www.tadoc.org/indicator/ROCP.htm # rocp_timeperiod_l = 30 の場合、30分足で(30 * 30) / 60 = 15時間必要 rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_s']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_s'] = rocp features['change_rocp_s'] = change_rocp rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_m']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_m'] = rocp features['change_rocp_m'] = change_rocp rocp = ta.ROCP(c, timeperiod=params['rocp_timeperiod_l']) change_rocp = calc_change(rocp, pd.Series(np.zeros(len(candle)), index=candle.index)) change_rocp.index = rocp.index features['rocp_l'] = rocp features['change_rocp_l'] = change_rocp # ROCR - Rate of change ratio: (price/prevPrice) features['rocr_s'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_s']) features['rocr_m'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_m']) features['rocr_l'] = ta.ROCR(c, timeperiod=params['rocr_timeperiod_l']) # ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100 features['rocr100_s'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_s']) features['rocr100_m'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_m']) features['rocr100_l'] = ta.ROCR100(c, timeperiod=params['rocr100_timeperiod_l']) # RSI = (100 * a) / (a + b) (a: x日間の値上がり幅の合計, b: x日間の値下がり幅の合計) # https://www.sevendata.co.jp/shihyou/technical/rsi.html # rsi_timeperiod_l=30の場合、30分足で、(30 * 30 / 60(min)) = 15時間必要 #features['rsi_s'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_s']) #features['rsi_m'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_m']) #features['rsi_l'] = ta.RSI(c, timeperiod=params['rsi_timeperiod_l']) # FASTK(KPeriod) = 100 * (Today's Close - LowestLow) / (HighestHigh - LowestLow) # FASTD(FastDperiod) = MA Smoothed FASTK over FastDperiod # http://www.tadoc.org/indicator/STOCHF.htm # stockf_fastk_period_l=30の場合30分足で、(((30 + 30) * 30) / 60(min)) = 30時間必要 (LowestLowが移動平均の30分余分に必要なので60period余分に計算する) fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_s'], fastd_period=params['stockf_fastd_period_s'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_s'] = fastk features['fastd_s'] = fastd features['fast_change_s'] = change_stockf fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_m'], fastd_period=params['stockf_fastd_period_m'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_m'] = fastk features['fastd_m'] = fastd features['fast_change_m'] = change_stockf fastk, fastd = ta.STOCHF(h, l, c, fastk_period=params['stockf_fastk_period_l'], fastd_period=params['stockf_fastk_period_l'], fastd_matype=ta.MA_Type.EMA) change_stockf = calc_change(fastk, fastd) change_stockf.index = fastk.index features['fastk_l'] = fastk features['fastd_l'] = fastd features['fast_change_l'] = change_stockf # TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA features['trix_s'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_s']) features['trix_m'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_m']) features['trix_l'] = ta.TRIX(c, timeperiod=params['trix_timeperiod_l']) # ULTOSC - Ultimate Oscillator features['ultosc_s'] = ta.ULTOSC(h, l, c, timeperiod1=params['ultosc_timeperiod_s1'], timeperiod2=params['ultosc_timeperiod_s2'], timeperiod3=params['ultosc_timeperiod_s3']) # WILLR = (当日終値 - N日間の最高値) / (N日間の最高値 - N日間の最安値)× 100 # https://inet-sec.co.jp/study/technical-manual/williamsr/ # willr_timeperiod_l=30の場合30分足で、(30 * 30 / 60) = 15時間必要 features['willr_s'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_s']) features['willr_m'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_m']) features['willr_l'] = ta.WILLR(h, l, c, timeperiod=params['willr_timeperiod_l']) #################################### # # Volume Indicator Functions # #################################### # Volume Indicator Functions # slowperiod_adosc_s = 10の場合、30分足で(10 * 30) / 60 = 5時間必要 features['ad'] = ta.AD(h, l, c, v) features['adosc_s'] = ta.ADOSC(h, l, c, v, fastperiod=params['fastperiod_adosc_s'], slowperiod=params['slowperiod_adosc_s']) features['obv'] = ta.OBV(c, v) #################################### # # Volatility Indicator Functions # #################################### # ATR - Average True Range features['atr_s'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_s']) features['atr_m'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_m']) features['atr_l'] = ta.ATR(h, l, c, timeperiod=params['atr_timeperiod_l']) # NATR - Normalized Average True Range #features['natr_s'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_s']) #features['natr_m'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_m']) #features['natr_l'] = ta.NATR(h, l, c, timeperiod=params['natr_timeperiod_l']) # TRANGE - True Range features['trange'] = ta.TRANGE(h, l, c) #################################### # # Price Transform Functions # #################################### features['avgprice'] = ta.AVGPRICE(o, h, l, c) features['medprice'] = ta.MEDPRICE(h, l) #features['typprice'] = ta.TYPPRICE(h, l, c) #features['wclprice'] = ta.WCLPRICE(h, l, c) #################################### # # Cycle Indicator Functions # #################################### #features['ht_dcperiod'] = ta.HT_DCPERIOD(c) #features['ht_dcphase'] = ta.HT_DCPHASE(c) #features['inphase'], features['quadrature'] = ta.HT_PHASOR(c) #features['sine'], features['leadsine'] = ta.HT_SINE(c) features['integer'] = ta.HT_TRENDMODE(c) #################################### # # Statistic Functions # #################################### # BETA - Beta features['beta_s'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_s']) features['beta_m'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_m']) features['beta_l'] = ta.BETA(h, l, timeperiod=params['beta_timeperiod_l']) # CORREL - Pearson's Correlation Coefficient (r) #features['correl_s'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_s']) #features['correl_m'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_m']) #features['correl_l'] = ta.CORREL(h, l, timeperiod=params['correl_timeperiod_l']) # LINEARREG - Linear Regression #features['linearreg_s'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_s']) #features['linearreg_m'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_m']) #features['linearreg_l'] = ta.LINEARREG(c, timeperiod=params['linearreg_timeperiod_l']) # LINEARREG_ANGLE - Linear Regression Angle features['linearreg_angle_s'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_s']) features['linearreg_angle_m'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_m']) features['linearreg_angle_l'] = ta.LINEARREG_ANGLE(c, timeperiod=params['linearreg_angle_timeperiod_l']) # LINEARREG_INTERCEPT - Linear Regression Intercept features['linearreg_intercept_s'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_s']) features['linearreg_intercept_m'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_m']) features['linearreg_intercept_l'] = ta.LINEARREG_INTERCEPT(c, timeperiod=params['linearreg_intercept_timeperiod_l']) # LINEARREG_SLOPE - Linear Regression Slope features['linearreg_slope_s'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_s']) features['linearreg_slope_m'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_m']) features['linearreg_slope_l'] = ta.LINEARREG_SLOPE(c, timeperiod=params['linearreg_slope_timeperiod_l']) # STDDEV - Standard Deviation features['stddev_s'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_s'], nbdev=1) features['stddev_m'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_m'], nbdev=1) features['stddev_l'] = ta.STDDEV(c, timeperiod=params['stddev_timeperiod_l'], nbdev=1) # TSF - Time Series Forecast features['tsf_s'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_s']) features['tsf_m'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_m']) features['tsf_l'] = ta.TSF(c, timeperiod=params['tsf_timeperiod_l']) # VAR - Variance #features['var_s'] = ta.VAR(c, timeperiod=params['var_timeperiod_s'], nbdev=1) #features['var_m'] = ta.VAR(c, timeperiod=params['var_timeperiod_m'], nbdev=1) #features['var_l'] = ta.VAR(c, timeperiod=params['var_timeperiod_l'], nbdev=1) # ボリンジャーバンド # bbands_timeperiod_l = 30の場合、30分足で(30 * 30) / 60 = 15時間必要 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_s'], nbdevup=params['bbands_nbdevup_s'], nbdevdn=params['bbands_nbdevdn_s'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_s'] = bb_upper features['bb_middle_s'] = bb_middle features['bb_lower_s'] = bb_lower features['bb_trend1_s'] = bb_trend1 features['bb_trend2_s'] = bb_trend2 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_m'], nbdevup=params['bbands_nbdevup_m'], nbdevdn=params['bbands_nbdevdn_m'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_m'] = bb_upper features['bb_middle_m'] = bb_middle features['bb_lower_m'] = bb_lower features['bb_trend1_m'] = bb_trend1 features['bb_trend2_m'] = bb_trend2 bb_upper, bb_middle, bb_lower = ta.BBANDS(c, timeperiod=params['bbands_timeperiod_l'], nbdevup=params['bbands_nbdevup_l'], nbdevdn=params['bbands_nbdevdn_l'], matype=ta.MA_Type.EMA) bb_trend1 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend1[c > bb_upper] = 1 bb_trend1[c < bb_lower] = -1 bb_trend2 = pd.Series(np.zeros(len(candle)), index=candle.index) bb_trend2[c > bb_middle] = 1 bb_trend2[c < bb_middle] = -1 features['bb_upper_l'] = bb_upper features['bb_middle_l'] = bb_middle features['bb_lower_l'] = bb_lower features['bb_trend1_l'] = bb_trend1 features['bb_trend2_l'] = bb_trend2 # ローソク足 features['CDL2CROWS'] = ta.CDL2CROWS(o, h, l, c) features['CDL3BLACKCROWS'] = ta.CDL3BLACKCROWS(o, h, l, c) features['CDL3INSIDE'] = ta.CDL3INSIDE(o, h, l, c) features['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(o, h, l, c) features['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(o, h, l, c) features['CDL3STARSINSOUTH'] = ta.CDL3STARSINSOUTH(o, h, l, c) features['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(o, h, l, c) features['CDLABANDONEDBABY'] = ta.CDLABANDONEDBABY(o, h, l, c, penetration=0) features['CDLADVANCEBLOCK'] = ta.CDLADVANCEBLOCK(o, h, l, c) features['CDLBELTHOLD'] = ta.CDLBELTHOLD(o, h, l, c) features['CDLBREAKAWAY'] = ta.CDLBREAKAWAY(o, h, l, c) features['CDLCLOSINGMARUBOZU'] = ta.CDLCLOSINGMARUBOZU(o, h, l, c) features['CDLCONCEALBABYSWALL'] = ta.CDLCONCEALBABYSWALL(o, h, l, c) features['CDLCOUNTERATTACK'] = ta.CDLCOUNTERATTACK(o, h, l, c) features['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(o, h, l, c, penetration=0) #features['CDLDOJI'] = ta.CDLDOJI(o, h, l, c) features['CDLDOJISTAR'] = ta.CDLDOJISTAR(o, h, l, c) features['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(o, h, l, c) features['CDLENGULFING'] = ta.CDLENGULFING(o, h, l, c) features['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(o, h, l, c, penetration=0) features['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(o, h, l, c, penetration=0) #features['CDLGAPSIDESIDEWHITE'] = ta.CDLGAPSIDESIDEWHITE(o, h, l, c) features['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(o, h, l, c) features['CDLHAMMER'] = ta.CDLHAMMER(o, h, l, c) #features['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(o, h, l, c) features['CDLHARAMI'] = ta.CDLHARAMI(o, h, l, c) features['CDLHARAMICROSS'] = ta.CDLHARAMICROSS(o, h, l, c) features['CDLHIGHWAVE'] = ta.CDLHIGHWAVE(o, h, l, c) #features['CDLHIKKAKE'] = ta.CDLHIKKAKE(o, h, l, c) features['CDLHIKKAKEMOD'] = ta.CDLHIKKAKEMOD(o, h, l, c) features['CDLHOMINGPIGEON'] = ta.CDLHOMINGPIGEON(o, h, l, c) #features['CDLIDENTICAL3CROWS'] = ta.CDLIDENTICAL3CROWS(o, h, l, c) features['CDLINNECK'] = ta.CDLINNECK(o, h, l, c) #features['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(o, h, l, c) features['CDLKICKING'] = ta.CDLKICKING(o, h, l, c) features['CDLKICKINGBYLENGTH'] = ta.CDLKICKINGBYLENGTH(o, h, l, c) features['CDLLADDERBOTTOM'] = ta.CDLLADDERBOTTOM(o, h, l, c) #features['CDLLONGLEGGEDDOJI'] = ta.CDLLONGLEGGEDDOJI(o, h, l, c) features['CDLMARUBOZU'] = ta.CDLMARUBOZU(o, h, l, c) #features['CDLMATCHINGLOW'] = ta.CDLMATCHINGLOW(o, h, l, c) features['CDLMATHOLD'] = ta.CDLMATHOLD(o, h, l, c, penetration=0) features['CDLMORNINGDOJISTAR'] = ta.CDLMORNINGDOJISTAR(o, h, l, c, penetration=0) features['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(o, h, l, c, penetration=0) features['CDLONNECK'] = ta.CDLONNECK(o, h, l, c) features['CDLPIERCING'] = ta.CDLPIERCING(o, h, l, c) features['CDLRICKSHAWMAN'] = ta.CDLRICKSHAWMAN(o, h, l, c) features['CDLRISEFALL3METHODS'] = ta.CDLRISEFALL3METHODS(o, h, l, c) features['CDLSEPARATINGLINES'] = ta.CDLSEPARATINGLINES(o, h, l, c) #features['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(o, h, l, c) features['CDLSHORTLINE'] = ta.CDLSHORTLINE(o, h, l, c) #features['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(o, h, l, c) features['CDLSTALLEDPATTERN'] = ta.CDLSTALLEDPATTERN(o, h, l, c) features['CDLSTICKSANDWICH'] = ta.CDLSTICKSANDWICH(o, h, l, c) features['CDLTAKURI'] = ta.CDLTAKURI(o, h, l, c) features['CDLTASUKIGAP'] = ta.CDLTASUKIGAP(o, h, l, c) features['CDLTHRUSTING'] = ta.CDLTHRUSTING(o, h, l, c) features['CDLTRISTAR'] = ta.CDLTRISTAR(o, h, l, c) features['CDLUNIQUE3RIVER'] = ta.CDLUNIQUE3RIVER(o, h, l, c) features['CDLUPSIDEGAP2CROWS'] = ta.CDLUPSIDEGAP2CROWS(o, h, l, c) features['CDLXSIDEGAP3METHODS'] = ta.CDLXSIDEGAP3METHODS(o, h, l, c) ''' # トレンドライン for dt in datetimerange(candle.index[0], candle.index[-1] + timedelta(minutes=1)): start_dt = (dt - timedelta(minutes=130)).strftime('%Y-%m-%d %H:%M:%S') end_dt = dt.strftime('%Y-%m-%d %H:%M:%S') tmp = candle.loc[(start_dt <= candle.index) & (candle.index <= end_dt)] for w_size, stride in [(15, 5), (30, 10), (60, 10), (120, 10)]: # for w_size, stride in [(120, 10)]: trendlines = calc_trendlines(tmp, w_size, stride) if len(trendlines) == 0: continue trendline_feature = calc_trendline_feature(tmp, trendlines) print('{}-{} {} {} {}'.format(dt - timedelta(minutes=130), dt, trendline_feature['high_a'], trendline_feature['high_b'], trendline_feature['high_diff'])) features.loc[features.index == end_dt, 'trendline_high_a_{}'.format(w_size)] = trendline_feature['high_a'] features.loc[features.index == end_dt, 'trendline_high_b_{}'.format(w_size)] = trendline_feature['high_b'] features.loc[features.index == end_dt, 'trendline_high_diff_{}'.format(w_size)] = trendline_feature['high_diff'] features.loc[features.index == end_dt, 'trendline_low_a_{}'.format(w_size)] = trendline_feature['low_a'] features.loc[features.index == end_dt, 'trendline_low_b_{}'.format(w_size)] = trendline_feature['low_b'] features.loc[features.index == end_dt, 'trendline_low_diff_{}'.format(w_size)] = trendline_feature['low_diff'] ''' window = 5 features_ext = features for w in range(window): tmp = features.shift(periods=60 * (w + 1), freq='S') tmp.columns = [c + '_' + str(w + 1) + 'w' for c in features.columns] features_ext = pd.concat([features_ext, tmp], axis=1) if candle_type == '5min': features_ext = features_ext.shift(periods=300, freq='S') features_ext = features_ext.fillna(method='ffill') features_ext = features_ext[features_ext.index == target_dt] return features_ext