示例#1
0
def get_sim_data():
    """
    Get the input data to the `params.Scales` object
    
    Create an `ambient.Profile` object and a list of 
    `stratified_plume_model.Particle` objects as the required input for 
    the `params.Scales` object.  
    
    Returns
    -------
    profile : `ambient.Profile` object
        profile object from the BM54 CTD data
    disp_phases: list
        list of `stratified_plume_model.Particle` objects describing the 
        blowout dispersed phases.
    z0 : float
        depth at the plume model origin (m)
    
    """
    # Get the netCDF file
    nc = test_sbm.make_ctd_file()

    # Create a profile object with all available chemicals in the CTD data
    profile = ambient.Profile(nc, chem_names='all')

    # Create the stratified plume model object
    spm = stratified_plume_model.Model(profile)

    # Set the release conditions
    T0 = 273.15 + 35.  # Release temperature in K
    R = 0.15  # Radius of leak source in m

    # Create the gas phase particles
    composition = ['methane', 'ethane', 'propane', 'oxygen']
    yk = np.array([0.93, 0.05, 0.02, 0.0])
    gas = dbm.FluidParticle(composition)
    z0 = 1000.
    disp_phases = []

    # Larger free gas bubbles
    mb0 = 8.  # total mass flux in kg/s
    de = 0.025  # bubble diameter in m
    lambda_1 = 0.85
    disp_phases.append(
        stratified_plume_model.particle_from_mb0(profile, z0, gas, yk, mb0, de,
                                                 lambda_1, T0))

    # Smaller free gas bubbles (note, it is not necessary to have more than
    # one bubble size)
    mb0 = 2.  # total mass flux in kg/s
    de = 0.0075  # bubble diameter in m
    lambda_1 = 0.9
    disp_phases.append(
        stratified_plume_model.particle_from_mb0(profile, z0, gas, yk, mb0, de,
                                                 lambda_1, T0))

    # Liquid hydrocarbon.  This could either be a dissolving phase (mixture
    # of liquid phases) or an inert phase.  We demonstrate here the simple
    # case of an inert oil phase
    oil = dbm.InsolubleParticle(True,
                                True,
                                rho_p=890.,
                                gamma=30.,
                                beta=0.0007,
                                co=2.90075e-9)
    mb0 = 10.  # total mass flux in kg/s
    de = 0.004  # bubble diameter in m
    lambda_1 = 0.9
    disp_phases.append(
        stratified_plume_model.particle_from_mb0(profile, z0, oil,
                                                 np.array([1.]), mb0, de,
                                                 lambda_1, T0))

    # Return the simulation data
    return (profile, disp_phases, z0)
示例#2
0
    T0 = 273.15 + 35.  # Release temperature in K
    R = 0.15  # Radius of leak source in m

    # Create the gas phase particles
    composition = ['methane', 'ethane', 'propane', 'oxygen']
    yk = np.array([0.93, 0.05, 0.02, 0.0])
    gas = dbm.FluidParticle(composition)
    z0 = 1000.
    disp_phases = []

    # Larger free gas bubbles
    mb0 = 8.  # total mass flux in kg/s
    de = 0.025  # bubble diameter in m
    lambda_1 = 0.85
    disp_phases.append(
        stratified_plume_model.particle_from_mb0(ctd, z0, gas, yk, mb0, de,
                                                 lambda_1, T0))

    # Smaller free gas bubbles (note, it is not necessary to have more than
    # one bubble size)
    mb0 = 2.  # total mass flux in kg/s
    de = 0.0075  # bubble diameter in m
    lambda_1 = 0.9
    disp_phases.append(
        stratified_plume_model.particle_from_mb0(ctd, z0, gas, yk, mb0, de,
                                                 lambda_1, T0))

    # Liquid hydrocarbon.  This could either be a dissolving phase (mixture
    # of liquid phases) or an inert phase.  We demonstrate here the simple
    # case of an inert oil phase
    oil = dbm.InsolubleParticle(True,
                                True,
示例#3
0
文件: test_spm.py 项目: changks/tamoc
def get_sim_data():
    """
    Create the data needed to initialize a simulation
    
    Performs the steps necessary to set up a stratified plume model simulation
    and passes the input variables to the `Model` object and 
    `Model.simulate()` method.  
    
    Returns
    -------
    profile : `ambient.Profile` object
        Return a profile object from the BM54 CTD data
    particles : list of `PlumeParticle` objects
        List of `PlumeParticle` objects containing the dispersed phase initial
        conditions
    z : float
        Depth of the release port (m)
    R : float
        Radius of the release port (m)
    maxit : float
        Maximum number of iterations to converge between inner and outer
        plumes
    toler : float
        Relative error tolerance to accept for convergence (--)
    delta_z : float
        Maximum step size to use in the simulation (m).  The ODE solver 
        in `calculate` is set up with adaptive step size integration, so 
        in theory this value determines the largest step size in the 
        output data, but not the numerical stability of the calculation.
    
    """
    # Get the ambient CTD data
    profile = get_profile()

    # Specify the release location and geometry and initialize a particle
    # list
    z0 = 300.
    R = 0.15
    particles = []

    # Add a dissolving particle to the list
    composition = ['oxygen', 'nitrogen', 'argon']
    yk = np.array([1.0, 0., 0.])
    o2 = dbm.FluidParticle(composition)
    Q_N = 150. / 60. / 60.
    de = 0.005
    lambda_1 = 0.85
    particles.append(
        stratified_plume_model.particle_from_Q(profile, z0, o2, yk, Q_N, de,
                                               lambda_1))

    # Add an insoluble particle to the list
    composition = ['inert']
    yk = np.array([1.])
    oil = dbm.InsolubleParticle(True, True)
    mb0 = 50.
    de = 0.01
    lambda_1 = 0.8
    particles.append(
        stratified_plume_model.particle_from_mb0(profile, z0, oil, [1.], mb0,
                                                 de, lambda_1))

    # Set the other simulation parameters
    maxit = 2
    toler = 0.2
    delta_z = 1.0

    # Return the results
    return (profile, particles, z0, R, maxit, toler, delta_z)
示例#4
0
文件: blowout.py 项目: socolofs/tamoc
 # Set the release conditions
 T0 = 273.15 + 35.   # Release temperature in K
 R = 0.15            # Radius of leak source in m
 
 # Create the gas phase particles
 composition = ['methane', 'ethane', 'propane', 'oxygen']
 yk = np.array([0.93, 0.05, 0.02, 0.0])
 gas = dbm.FluidParticle(composition)
 z0 = 1000.
 disp_phases = []
 
 # Larger free gas bubbles
 mb0 = 8.         # total mass flux in kg/s
 de = 0.025       # bubble diameter in m
 lambda_1 = 0.85
 disp_phases.append(stratified_plume_model.particle_from_mb0(ctd, z0, gas, 
                    yk, mb0, de, lambda_1, T0))
 
 # Smaller free gas bubbles (note, it is not necessary to have more than
 # one bubble size)
 mb0 = 2.         # total mass flux in kg/s
 de = 0.0075      # bubble diameter in m
 lambda_1 = 0.9
 disp_phases.append(stratified_plume_model.particle_from_mb0(ctd, z0, gas, 
                    yk, mb0, de, lambda_1, T0))
 
 # Liquid hydrocarbon.  This could either be a dissolving phase (mixture
 # of liquid phases) or an inert phase.  We demonstrate here the simple
 # case of an inert oil phase
 oil = dbm.InsolubleParticle(True, True, rho_p=890., gamma=30., 
                             beta=0.0007, co=2.90075e-9)
 mb0 = 10.        # total mass flux in kg/s
示例#5
0
def get_sim_data():
    """
    Create the data needed to initialize a simulation
    
    Performs the steps necessary to set up a stratified plume model simulation
    and passes the input variables to the `Model` object and 
    `Model.simulate()` method.  
    
    Returns
    -------
    profile : `ambient.Profile` object
        Return a profile object from the BM54 CTD data
    particles : list of `PlumeParticle` objects
        List of `PlumeParticle` objects containing the dispersed phase initial
        conditions
    z : float
        Depth of the release port (m)
    R : float
        Radius of the release port (m)
    maxit : float
        Maximum number of iterations to converge between inner and outer
        plumes
    toler : float
        Relative error tolerance to accept for convergence (--)
    delta_z : float
        Maximum step size to use in the simulation (m).  The ODE solver 
        in `calculate` is set up with adaptive step size integration, so 
        in theory this value determines the largest step size in the 
        output data, but not the numerical stability of the calculation.
    
    """
    # Get the ambient CTD data
    profile = get_profile()
    
    # Specify the release location and geometry and initialize a particle
    # list
    z0 = 300.
    R = 0.15
    particles = []
    
    # Add a dissolving particle to the list
    composition = ['oxygen', 'nitrogen', 'argon']
    yk = np.array([1.0, 0., 0.])
    o2 = dbm.FluidParticle(composition)
    Q_N = 150. / 60. / 60. 
    de = 0.005
    lambda_1 = 0.85
    particles.append(stratified_plume_model.particle_from_Q(profile, z0, o2, 
                     yk, Q_N, de, lambda_1))
    
    # Add an insoluble particle to the list
    composition = ['inert']
    yk = np.array([1.])
    oil = dbm.InsolubleParticle(True, True)
    mb0 = 50.
    de = 0.01
    lambda_1 = 0.8
    particles.append(stratified_plume_model.particle_from_mb0(profile, z0, 
                     oil, [1.], mb0, de, lambda_1))
    
    # Set the other simulation parameters
    maxit = 2
    toler = 0.2
    delta_z = 1.0
    
    # Return the results
    return (profile, particles, z0, R, maxit, toler, delta_z)
示例#6
0
def get_sim_data():
    """
    Get the input data to the `params.Scales` object
    
    Create an `ambient.Profile` object and a list of 
    `stratified_plume_model.Particle` objects as the required input for 
    the `params.Scales` object.  
    
    Returns
    -------
    profile : `ambient.Profile` object
        profile object from the BM54 CTD data
    disp_phases: list
        list of `stratified_plume_model.Particle` objects describing the 
        blowout dispersed phases.
    z0 : float
        depth at the plume model origin (m)
    
    """
    # Get the netCDF file
    nc = test_sbm.make_ctd_file()
    
    # Create a profile object with all available chemicals in the CTD data
    profile = ambient.Profile(nc, chem_names='all')
    
    # Create the stratified plume model object
    spm = stratified_plume_model.Model(profile)
    
    # Set the release conditions
    T0 = 273.15 + 35.   # Release temperature in K
    R = 0.15            # Radius of leak source in m
    
    # Create the gas phase particles
    composition = ['methane', 'ethane', 'propane', 'oxygen']
    yk = np.array([0.93, 0.05, 0.02, 0.0])
    gas = dbm.FluidParticle(composition)
    z0 = 1000.
    disp_phases = []
    
    # Larger free gas bubbles
    mb0 = 8.         # total mass flux in kg/s
    de = 0.025       # bubble diameter in m
    lambda_1 = 0.85
    disp_phases.append(stratified_plume_model.particle_from_mb0(profile, z0, 
        gas, yk, mb0, de, lambda_1, T0))
    
    # Smaller free gas bubbles (note, it is not necessary to have more than
    # one bubble size)
    mb0 = 2.         # total mass flux in kg/s
    de = 0.0075      # bubble diameter in m
    lambda_1 = 0.9
    disp_phases.append(stratified_plume_model.particle_from_mb0(profile, z0, 
        gas, yk, mb0, de, lambda_1, T0))
    
    # Liquid hydrocarbon.  This could either be a dissolving phase (mixture
    # of liquid phases) or an inert phase.  We demonstrate here the simple
    # case of an inert oil phase
    oil = dbm.InsolubleParticle(True, True, rho_p=890., gamma=30., 
                                beta=0.0007, co=2.90075e-9)
    mb0 = 10.        # total mass flux in kg/s
    de = 0.004       # bubble diameter in m
    lambda_1 = 0.9
    disp_phases.append(stratified_plume_model.particle_from_mb0(profile, z0, 
        oil, np.array([1.]), mb0, de, lambda_1, T0))
    
    # Return the simulation data
    return (profile, disp_phases, z0)