示例#1
0
            def forward(img_a, img_b):
                img_a /= 255.
                img_b /= 255.

                img_ab = generator(img_a, name='atob', reuse=False)
                img_ba = generator(img_b, name='btoa', reuse=False)
                img_aba = generator(img_ab, name='btoa', reuse=True)
                img_bab = generator(img_ba, name='atob', reuse=True)

                logit_fake_a = discriminator(img_ba, name='a', reuse=False)
                logit_fake_b = discriminator(img_ab, name='b', reuse=False)

                score_fake_a = O.sigmoid(logit_fake_a)
                score_fake_b = O.sigmoid(logit_fake_b)

                for name in ['img_a', 'img_b', 'img_ab', 'img_ba', 'img_aba', 'img_bab', 'score_fake_a', 'score_fake_b']:
                    dpc.add_output(locals()[name], name=name)

                if env.phase is env.Phase.TRAIN:
                    logit_real_a = discriminator(img_a, name='a', reuse=True)
                    logit_real_b = discriminator(img_b, name='b', reuse=True)
                    score_real_a = O.sigmoid(logit_real_a)
                    score_real_b = O.sigmoid(logit_real_b)

                    all_g_loss = 0.
                    all_d_loss = 0.
                    r_loss_ratio = 0.9

                    for pair_name, (real, fake), (logit_real, logit_fake), (score_real, score_fake) in zip(
                            ['lossa', 'lossb'],
                            [(img_a, img_aba), (img_b, img_bab)],
                            [(logit_real_a, logit_fake_a), (logit_real_b, logit_fake_b)],
                            [(score_real_a, score_fake_a), (score_real_b, score_fake_b)]):

                        with env.name_scope(pair_name):
                            d_loss_real = O.sigmoid_cross_entropy_with_logits(logits=logit_real, labels=O.ones_like(logit_real)).mean(name='d_loss_real')
                            d_loss_fake = O.sigmoid_cross_entropy_with_logits(logits=logit_fake, labels=O.zeros_like(logit_fake)).mean(name='d_loss_fake')
                            g_loss = O.sigmoid_cross_entropy_with_logits(logits=logit_fake, labels=O.ones_like(logit_fake)).mean(name='g_loss')

                            d_acc_real = (score_real > 0.5).astype('float32').mean(name='d_acc_real')
                            d_acc_fake = (score_fake < 0.5).astype('float32').mean(name='d_acc_fake')
                            g_accuracy = (score_fake > 0.5).astype('float32').mean(name='g_accuracy')

                            d_accuracy = O.identity(.5 * (d_acc_real + d_acc_fake), name='d_accuracy')
                            d_loss = O.identity(.5 * (d_loss_real + d_loss_fake), name='d_loss')

                            # r_loss = O.raw_l2_loss('raw_r_loss', real, fake).flatten2().sum(axis=1).mean(name='r_loss')
                            r_loss = O.raw_l2_loss('raw_r_loss', real, fake).mean(name='r_loss')
                            # r_loss = O.raw_cross_entropy_prob('raw_r_loss', real, fake).flatten2().sum(axis=1).mean(name='r_loss')

                            # all_g_loss += g_loss + r_loss
                            all_g_loss += (1 - r_loss_ratio) * g_loss + r_loss_ratio * r_loss
                            all_d_loss += d_loss

                        for v in [d_loss_real, d_loss_fake, g_loss, d_acc_real, d_acc_fake, g_accuracy, d_accuracy, d_loss, r_loss]:
                            dpc.add_output(v, name=re.sub('^tower/\d+/', '', v.name)[:-2], reduce_method='sum')

                    dpc.add_output(all_g_loss, name='g_loss', reduce_method='sum')
                    dpc.add_output(all_d_loss, name='d_loss', reduce_method='sum')
示例#2
0
def make_network(env):
    with env.create_network() as net:

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                h, w, c = 28, 28, 1
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def forward(img):
                _ = img
                _ = O.conv2d('conv1',
                             _,
                             16, (3, 3),
                             padding='SAME',
                             nonlin=O.identity)
                _ = O.batch_norm('bn1', _)
                _ = O.relu(_)
                _ = O.pooling2d('pool1', _, kernel=2)
                _ = O.conv2d('conv2',
                             _,
                             32, (3, 3),
                             padding='SAME',
                             nonlin=O.identity)
                _ = O.batch_norm('bn2', _)
                _ = O.relu(_)
                _ = O.pooling2d('pool2', _, kernel=2)
                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc1', _, 64)
        _ = O.fc('fc2', _, 10)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(
                logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
示例#3
0
def make_network(env):
    with env.create_network() as net:
        nr_classes = get_env('dataset.nr_classes')

        conv_bn_relu = functools.partial(O.conv2d, nonlin=O.bn_relu)
        conv2d = conv_bn_relu

        dpc = env.create_dpcontroller()
        with dpc.activate():
            def inputs():
                h, w, c = 32, 32, 3
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def forward(img):
                _ = img
                _ = conv2d('conv1.1', _, 16, (3, 3), padding='SAME')
                _ = conv2d('conv1.2', _, 16, (3, 3), padding='SAME')
                _ = O.pooling2d('pool1', _, kernel=3, stride=2)
                _ = conv2d('conv2.1', _, 32, (3, 3), padding='SAME')
                _ = conv2d('conv2.2', _, 32, (3, 3), padding='SAME')
                _ = O.pooling2d('pool2', _, kernel=3, stride=2)
                _ = conv2d('conv3.1', _, 64, (3, 3), padding='VALID')
                _ = conv2d('conv3.2', _, 64, (3, 3), padding='VALID')
                _ = conv2d('conv3.3', _, 64, (3, 3), padding='VALID')

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc1', _, 128, nonlin=O.relu)
        _ = O.fc('fc2', _, 64, nonlin=O.relu)
        _ = O.fc('linear', _, nr_classes)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
def make_network(env):
    with env.create_network() as net:
        net.dist = O.distrib.GaussianDistribution('policy',
                                                  size=get_action_shape()[0],
                                                  fixed_std=False)

        state = O.placeholder('state', shape=(None, ) + get_input_shape())
        batch_size = state.shape[0]

        # We have to define variable scope here for later optimization.

        with env.variable_scope('policy'):
            _ = state

            _ = O.fc('fc1', _, 64, nonlin=O.relu)
            _ = O.fc('fc2', _, 64, nonlin=O.relu)
            mu = O.fc('fc_mu', _, net.dist.sample_size, nonlin=O.tanh)
            logstd = O.variable('logstd',
                                O.truncated_normal_initializer(stddev=0.01),
                                shape=(net.dist.sample_size, ),
                                trainable=True)

            logstd = O.tile(logstd.add_axis(0), [batch_size, 1])
            theta = O.concat([mu, logstd], axis=1)

            policy = net.dist.sample(batch_size=batch_size,
                                     theta=theta,
                                     process_theta=True)
            policy = O.clip_by_value(policy, -1, 1)

            net.add_output(theta, name='theta')
            net.add_output(policy, name='policy')

        if env.phase == env.Phase.TRAIN:
            theta_old = O.placeholder('theta_old',
                                      shape=(None, net.dist.param_size))
            action = O.placeholder('action',
                                   shape=(None, net.dist.sample_size))
            advantage = O.placeholder('advantage', shape=(None, ))
            entropy_beta = O.scalar('entropy_beta', g.entropy_beta)

            log_prob = net.dist.log_likelihood(action,
                                               theta,
                                               process_theta=True)
            log_prob_old = net.dist.log_likelihood(action,
                                                   theta_old,
                                                   process_theta=True)

            ratio = O.exp(log_prob - log_prob_old)
            epsilon = get_env('ppo.epsilon')
            surr1 = ratio * advantage  # surrogate from conservative policy iteration
            surr2 = O.clip_by_value(ratio, 1.0 - epsilon,
                                    1.0 + epsilon) * advantage
            policy_loss = -O.reduce_mean(O.min(
                surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
            entropy = net.dist.entropy(theta, process_theta=True).mean()
            entropy_loss = -entropy_beta * entropy

            net.add_output(policy_loss, name='policy_loss')
            net.add_output(entropy_loss, name='entropy_loss')

            summary.scalar('policy_entropy', entropy)

        with env.variable_scope('value'):
            _ = state
            _ = O.fc('fc1', _, 64, nonlin=O.relu)
            _ = O.fc('fc2', _, 64, nonlin=O.relu)
            value = O.fc('fcv', _, 1)
            value = value.remove_axis(1)
            net.add_output(value, name='value')

        if env.phase == env.Phase.TRAIN:
            value_label = O.placeholder('value_label', shape=(None, ))
            value_old = O.placeholder('value_old', shape=(None, ))

            value_surr1 = O.raw_l2_loss('raw_value_loss_surr1', value,
                                        value_label)
            value_clipped = value_old + O.clip_by_value(
                value - value_old, -epsilon, epsilon)
            value_surr2 = O.raw_l2_loss('raw_value_loss_surr2', value_clipped,
                                        value_label)
            value_loss = O.reduce_mean(O.max(value_surr1, value_surr2))
            net.add_output(value_loss, name='value_loss')

        if env.phase == env.Phase.TRAIN:
            loss = O.identity(policy_loss + entropy_loss + value_loss,
                              name='total_loss')
            net.set_loss(loss)
示例#5
0
def make_network(env):
    is_train = env.phase is env.Phase.TRAIN

    # device control: always use master device only for training session
    if is_train:
        slave_devices = env.slave_devices
        env.set_slave_devices([])
    
    with env.create_network() as net:
        input_length, = get_input_shape()
        action_length, = get_action_shape()

        dpc = env.create_dpcontroller()
        with dpc.activate():
            def inputs():
                state = O.placeholder('state', shape=(None, input_length))
                return [state]

            # forward policy network and value network separately (actor-critic)
            def forward(x):
                _ = x
                _ = O.fc('fcp1', _, 512, nonlin=O.relu)
                _ = O.fc('fcp2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_p')

                _ = x
                _ = O.fc('fcv1', _, 512, nonlin=O.relu)
                _ = O.fc('fcv2', _, 256, nonlin=O.relu)
                dpc.add_output(_, name='feature_v')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature_p']
        # mu and std, assuming spherical covariance
        policy_mu = O.fc('fc_policy_mu', _, action_length)

        # In this example, we do not use variance. instead, we use fixed value.
        # policy_var = O.fc('fc_policy_var', _, 1, nonlin=O.softplus)
        # policy_var = O.tile(policy_var, [1, action_length], name='policy_var')
        # policy_std = O.sqrt(policy_var, name='policy_std')

        actor_space = get_env('a3c.actor_space')
        nr_bins = actor_space.shape[1]

        # Instead of using normal distribution, we use Laplacian distribution for policy.
        # And also, we are sampling from a truncated Laplacian distribution (only care the value in the
        # action space). To simplify the computation, we discretize the action space.
        actor_space = O.constant(actor_space)
        actor_space = O.tile(actor_space.add_axis(0), [policy_mu.shape[0], 1, 1])
        policy_mu3 = O.tile(policy_mu.add_axis(2), [1, 1, nr_bins])

        # policy_std3 = O.tile(policy_std.add_axis(2), [1, 1, nr_bins])
        # logits = O.abs(actor_space - policy_mu3) / (policy_std3 + 1e-2)

        # Here, we force the std of the policy to be 1.
        logits_explore = -O.abs(actor_space - policy_mu3)
        policy_explore = O.softmax(logits_explore)

        # Clip the policy for output
        action_range = get_action_range()
        action_range = tuple(map(O.constant, action_range))
        action_range = tuple(map(lambda x: O.tile(x.add_axis(0), [policy_mu.shape[0], 1]), action_range))
        policy_output = O.clip_by_value(policy_mu, *action_range)

        _ = dpc.outputs['feature_v']
        value = O.fc('fc_value', _, 1)
        value = value.remove_axis(1, name='value')

        # Note that, here the policy_explore is a discrete policy,
        # and policy is actually the continuous one.
        net.add_output(policy_explore, name='policy_explore')
        net.add_output(policy_output, name='policy')
        net.add_output(value, name='value')

        if is_train:
            action = O.placeholder('action', shape=(None, action_length), dtype='int64')
            future_reward = O.placeholder('future_reward', shape=(None, ))
            entropy_beta = O.scalar('entropy_beta', 0.1, trainable=False)

            # Since we discretized the action space, use cross entropy here.
            log_policy = O.log(policy_explore + 1e-4)
            log_pi_a_given_s = (log_policy * O.one_hot(action, nr_bins)).sum(axis=2).sum(axis=1)
            advantage = (future_reward - O.zero_grad(value)).rename('advantage')

            # Important trick: using only positive advantage to perform gradient assent. This stabilizes the training.
            advantage = advantage * O.zero_grad((advantage > 0.).astype('float32'))
            policy_loss = O.identity(-(log_pi_a_given_s * advantage).mean(), name='policy_loss')

            # As mentioned, there is no trainable variance.
            # entropy_loss = O.identity(-entropy_beta * (policy_std ** 2.).sum(axis=1).mean(), name='entropy_loss')

            value_loss = O.raw_smooth_l1_loss('raw_value_loss', future_reward, value).mean(name='value_loss')

            loss = O.add_n([policy_cost, value_loss], name='loss')

            net.set_loss(loss)

            for v in [policy_cost, value_loss,
                      value.mean(name='predict_value'), advantage.rms(name='rms_advantage'), loss]:
                summary.scalar(v)

    if is_train:
        env.set_slave_devices(slave_devices)
示例#6
0
def make_network(env):
    with env.create_network() as net:
        n = 2
        nr_classes = get_env('dataset.nr_classes')

        conv2d = functools.partial(O.conv2d,
                                   kernel=3,
                                   use_bias=False,
                                   padding='SAME')
        conv_bn_relu = functools.partial(conv2d, nonlin=O.bn_relu)

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                h, w, c = 32, 32, 3
                img = O.placeholder('img', shape=(None, h, w, c))
                return [img]

            def residual(name, x, first=False, inc_dim=False):
                in_channel = x.static_shape[3]
                out_channel = in_channel
                stride = 1
                if inc_dim:
                    out_channel = in_channel * 2
                    stride = 2
                with env.variable_scope(name):
                    _ = x if first else O.bn_relu(x)
                    _ = conv_bn_relu('conv1', _, out_channel, stride=stride)
                    _ = conv2d('conv2', _, out_channel)
                    if inc_dim:
                        x = O.pooling2d('pool', x, kernel=2)
                        x = O.pad(x, [[0, 0], [0, 0], [0, 0],
                                      [in_channel // 2, in_channel // 2]])
                print(name, x.static_shape)
                _ = _ + x
                return _

            def forward(img):
                _ = img / 128.0 - 1.0
                _ = conv_bn_relu('conv0', _, 16)
                _ = residual('res1.0', _, first=True)
                for i in range(1, n):
                    _ = residual('res1.{}'.format(i), _)
                _ = residual('res2.0', _, inc_dim=True)
                for i in range(1, n):
                    _ = residual('res2.{}'.format(i), _)
                _ = residual('res3.0', _, inc_dim=True)
                for i in range(1, n):
                    _ = residual('res3.{}'.format(i), _)

                _ = O.batch_norm('bn_last', _)
                _ = O.relu(_)

                _ = _.mean(axis=[1, 2])  # global avg pool

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('linear', _, nr_classes)

        prob = O.softmax(_, name='prob')
        pred = _.argmax(axis=1).astype('int32', name='pred')
        net.add_output(prob)
        net.add_output(pred)

        if env.phase is env.Phase.TRAIN:
            label = O.placeholder('label', shape=(None, ), dtype='int32')
            loss = O.sparse_softmax_cross_entropy_with_logits(
                logits=_, labels=label).mean()
            loss = O.identity(loss, name='loss')
            net.set_loss(loss)

            accuracy = O.eq(label, pred).astype('float32').mean()
            error = 1. - accuracy

            summary.scalar('accuracy', accuracy)
            summary.scalar('error', error)
            summary.inference.scalar('loss', loss)
            summary.inference.scalar('accuracy', accuracy)
            summary.inference.scalar('error', error)
示例#7
0
def make_network(env):
    is_train = env.phase is env.Phase.TRAIN
    if is_train:
        slave_devices = env.slave_devices
        env.set_slave_devices([])

    with env.create_network() as net:
        h, w, c = get_input_shape()

        dpc = env.create_dpcontroller()
        with dpc.activate():

            def inputs():
                state = O.placeholder('state', shape=(None, h, w, c))
                return [state]

            def forward(x):
                _ = x / 255.0
                with O.argscope(O.conv2d, nonlin=O.relu):
                    _ = O.conv2d('conv0', _, 32, 5)
                    _ = O.max_pooling2d('pool0', _, 2)
                    _ = O.conv2d('conv1', _, 32, 5)
                    _ = O.max_pooling2d('pool1', _, 2)
                    _ = O.conv2d('conv2', _, 64, 4)
                    _ = O.max_pooling2d('pool2', _, 2)
                    _ = O.conv2d('conv3', _, 64, 3)

                dpc.add_output(_, name='feature')

            dpc.set_input_maker(inputs).set_forward_func(forward)

        _ = dpc.outputs['feature']
        _ = O.fc('fc0', _, 512, nonlin=O.p_relu)
        policy = O.fc('fc_policy', _, get_player_nr_actions())
        value = O.fc('fc_value', _, 1)

        expf = O.scalar('explore_factor', 1, trainable=False)
        policy_explore = O.softmax(policy * expf, name='policy_explore')

        policy = O.softmax(policy, name='policy')
        value = value.remove_axis(1, name='value')

        net.add_output(policy_explore, name='policy_explore')
        net.add_output(policy, name='policy')
        net.add_output(value, name='value')

        if is_train:
            action = O.placeholder('action', shape=(None, ), dtype='int64')
            future_reward = O.placeholder('future_reward', shape=(None, ))
            entropy_beta = O.scalar('entropy_beta', 0.01, trainable=False)

            log_policy = O.log(policy + 1e-6)
            log_pi_a_given_s = (
                log_policy *
                O.one_hot(action, get_player_nr_actions())).sum(axis=1)
            advantage = (future_reward -
                         O.zero_grad(value)).rename('advantage')

            policy_loss = O.identity(-(log_pi_a_given_s * advantage).mean(),
                                     name='policy_loss')
            entropy_loss = O.identity(
                -entropy_beta * (-policy * log_policy).sum(axis=1).mean(),
                name='entropy_loss')
            value_loss = O.raw_l2_loss('raw_value_loss', future_reward,
                                       value).mean(name='value_loss')

            loss = O.add_n([policy_loss, entropy_loss, value_loss],
                           name='loss')

            net.set_loss(loss)

            for v in [
                    policy_loss, entropy_loss, value_loss,
                    value.mean(name='predict_value'),
                    advantage.rms(name='rms_advantage'), loss
            ]:
                summary.scalar(v)

    if is_train:
        env.set_slave_devices(slave_devices)