示例#1
0
def main(train_path, test_path, results_file_path, sigmorphon_root_dir, input_dim, hidden_dim, epochs, layers,
         optimization, feat_input_dim):
    hyper_params = {'INPUT_DIM': input_dim, 'HIDDEN_DIM': hidden_dim, 'EPOCHS': epochs, 'LAYERS': layers,
                    'MAX_PREDICTION_LEN': MAX_PREDICTION_LEN, 'OPTIMIZATION': optimization}

    print 'train path = ' + str(train_path)
    print 'test path =' + str(test_path)
    for param in hyper_params:
        print param + '=' + str(hyper_params[param])

    # load data
    (train_target_words, train_source_words, train_target_feat_dicts, train_source_feat_dicts) = prepare_sigmorphon_data.load_data(
        train_path, 2)
    (test_target_words, test_source_words, test_target_feat_dicts, test_source_feat_dicts) = prepare_sigmorphon_data.load_data(
        test_path, 2)
    alphabet, feature_types = prepare_sigmorphon_data.get_alphabet(train_target_words, train_source_words, train_target_feat_dicts, train_source_feat_dicts)

    # used for character dropout
    alphabet.append(NULL)
    alphabet.append(UNK)

    # used during decoding
    alphabet.append(EPSILON)
    alphabet.append(BEGIN_WORD)
    alphabet.append(END_WORD)

    feature_alphabet = common.get_feature_alphabet(train_source_feat_dicts + train_target_feat_dicts)
    feature_alphabet.append(UNK_FEAT)

    # add indices to alphabet - used to indicate when copying from lemma to word
    for marker in [str(i) for i in xrange(MAX_PREDICTION_LEN)]:
        alphabet.append(marker)

    # feat 2 int
    feat_index = dict(zip(feature_alphabet, range(0, len(feature_alphabet))))

    # char 2 int
    alphabet_index = dict(zip(alphabet, range(0, len(alphabet))))
    inverse_alphabet_index = {index: char for char, index in alphabet_index.items()}

    # cluster the data by POS type (features)
    # TODO: do we need to cluster on both source and target feats? 
    #       probably enough to cluster on source here becasue pos will be same
    #       (no derivational morphology in this task)
    train_cluster_to_data_indices = common.cluster_data_by_pos(train_source_feat_dicts)
    test_cluster_to_data_indices = common.cluster_data_by_pos(test_source_feat_dicts)

    # cluster the data by inflection type (features)
    # train_cluster_to_data_indices = common.cluster_data_by_morph_type(train_feat_dicts, feature_types)
    # test_cluster_to_data_indices = common.cluster_data_by_morph_type(test_feat_dicts, feature_types)

    accuracies = []
    final_results = {}

    # factored model: new model per inflection type
    for cluster_index, cluster_type in enumerate(train_cluster_to_data_indices):

        # get the inflection-specific data
        train_cluster_target_words = [train_target_words[i] for i in train_cluster_to_data_indices[cluster_type]]
        if len(train_cluster_target_words) < 1:
            print 'only ' + str(len(train_cluster_target_words)) + ' samples for this inflection type. skipping'
            continue
        else:
            print 'now evaluating model for cluster ' + str(cluster_index + 1) + '/' + \
                  str(len(train_cluster_to_data_indices)) + ': ' + cluster_type + ' with ' + \
                  str(len(train_cluster_target_words)) + ' examples'

        # test best model
        try:
            test_cluster_source_words = [test_source_words[i] for i in test_cluster_to_data_indices[cluster_type]]
            test_cluster_target_words = [test_target_words[i] for i in test_cluster_to_data_indices[cluster_type]]
            test_cluster_source_feat_dicts = [test_source_feat_dicts[i] for i in test_cluster_to_data_indices[cluster_type]]
            test_cluster_target_feat_dicts = [test_target_feat_dicts[i] for i in test_cluster_to_data_indices[cluster_type]]

            # load best model
            best_model, encoder_frnn, encoder_rrnn, decoder_rnn = load_best_model(str(cluster_index), alphabet,
                                                                                  results_file_path, input_dim,
                                                                                  hidden_dim, layers,
                                                                                  feature_alphabet, feat_input_dim,
                                                                                  feature_types)

            predicted_templates = task2_joint_structured_inflection_feedback_fix.predict_templates(best_model, decoder_rnn,
                                                                                      encoder_frnn, encoder_rrnn,
                                                                                      alphabet_index,
                                                                                      inverse_alphabet_index,
                                                                                      test_cluster_source_words,
                                                                                      test_cluster_source_feat_dicts,
                                                                                      test_cluster_target_feat_dicts,
                                                                                      feat_index,
                                                                                      feature_types)

            accuracy = task2_joint_structured_inflection_feedback_fix.evaluate_model(predicted_templates, test_cluster_source_words,
                                                                        test_cluster_source_feat_dicts, test_cluster_target_words,
                                                                        test_cluster_target_feat_dicts,
                                                                        feature_types, print_results=False)
            accuracies.append(accuracy)

            # get predicted_templates in the same order they appeared in the original file
            # iterate through them and foreach concat morph, lemma, features in order to print later in the task format
            for i in test_cluster_to_data_indices[cluster_type]:
                joint_index = test_source_words[i] + ':' + common.get_morph_string(test_source_feat_dicts[i], feature_types) \
                                                    + ':' + common.get_morph_string(test_target_feat_dicts[i], feature_types)
                inflection = task2_joint_structured_inflection_feedback_fix.instantiate_template(predicted_templates[joint_index],
                                                                                    test_source_words[i])
                final_results[i] = (test_source_words[i], test_source_feat_dicts[i], inflection, test_target_feat_dicts[i])

        except KeyError:
            print 'could not find relevant examples in test data for cluster: ' + cluster_type

    accuracy_vals = [accuracies[i][1] for i in xrange(len(accuracies))]
    macro_avg_accuracy = sum(accuracy_vals) / len(accuracies)
    print 'macro avg accuracy: ' + str(macro_avg_accuracy)

    mic_nom = sum([accuracies[i][0] * accuracies[i][1] for i in xrange(len(accuracies))])
    mic_denom = sum([accuracies[i][0] for i in xrange(len(accuracies))])
    micro_average_accuracy = mic_nom / mic_denom
    print 'micro avg accuracy: ' + str(micro_average_accuracy)

    if 'test' in test_path:
        suffix = '.best.test'
    else:
        suffix = '.best'
    task2_joint_structured_inflection.write_results_file(hyper_params, micro_average_accuracy, train_path,
                                              test_path, results_file_path + suffix, sigmorphon_root_dir,
                                              final_results)
示例#2
0
def main(train_path, test_path, results_file_path, sigmorphon_root_dir,
         input_dim, hidden_dim, epochs, layers, optimization, feat_input_dim,
         nbest):
    hyper_params = {
        'INPUT_DIM': input_dim,
        'HIDDEN_DIM': hidden_dim,
        'EPOCHS': epochs,
        'LAYERS': layers,
        'MAX_PREDICTION_LEN': MAX_PREDICTION_LEN,
        'OPTIMIZATION': optimization,
        'NBEST': nbest
    }

    print 'train path = ' + str(train_path)
    print 'test path =' + str(test_path)
    for param in hyper_params:
        print param + '=' + str(hyper_params[param])

    # load data
    (train_target_words, train_source_words, train_target_feat_dicts,
     train_source_feat_dicts) = prepare_sigmorphon_data.load_data(
         train_path, 2)
    (test_target_words, test_source_words, test_target_feat_dicts,
     test_source_feat_dicts) = prepare_sigmorphon_data.load_data(test_path, 2)
    alphabet, feature_types = prepare_sigmorphon_data.get_alphabet(
        train_target_words, train_source_words, train_target_feat_dicts,
        train_source_feat_dicts)

    # used for character dropout
    alphabet.append(NULL)
    alphabet.append(UNK)

    # used during decoding
    alphabet.append(EPSILON)
    alphabet.append(BEGIN_WORD)
    alphabet.append(END_WORD)

    feature_alphabet = common.get_feature_alphabet(train_source_feat_dicts +
                                                   train_target_feat_dicts)
    feature_alphabet.append(UNK_FEAT)

    # add indices to alphabet - used to indicate when copying from lemma to word
    for marker in [str(i) for i in xrange(MAX_PREDICTION_LEN)]:
        alphabet.append(marker)

    # feat 2 int
    feat_index = dict(zip(feature_alphabet, range(0, len(feature_alphabet))))

    # char 2 int
    alphabet_index = dict(zip(alphabet, range(0, len(alphabet))))
    inverse_alphabet_index = {
        index: char
        for char, index in alphabet_index.items()
    }

    # cluster the data by POS type (features)
    # TODO: do we need to cluster on both source and target feats?
    #       probably enough to cluster on source here becasue pos will be same
    #       (no derivational morphology in this task)
    # train_cluster_to_data_indices = common.cluster_data_by_pos(train_source_feat_dicts)
    # test_cluster_to_data_indices = common.cluster_data_by_pos(test_source_feat_dicts)

    # cluster the data by inflection type (features)
    # train_cluster_to_data_indices = common.cluster_data_by_morph_type(train_feat_dicts, feature_types)
    # test_cluster_to_data_indices = common.cluster_data_by_morph_type(test_feat_dicts, feature_types)

    # no clustering, single model
    train_cluster_to_data_indices = common.get_single_pseudo_cluster(
        train_source_feat_dicts)
    test_cluster_to_data_indices = common.get_single_pseudo_cluster(
        test_source_feat_dicts)

    accuracies = []
    final_results = {}

    # factored model: new model per inflection type
    for cluster_index, cluster_type in enumerate(
            train_cluster_to_data_indices):

        # get the inflection-specific data
        train_cluster_target_words = [
            train_target_words[i]
            for i in train_cluster_to_data_indices[cluster_type]
        ]
        if len(train_cluster_target_words) < 1:
            print 'only ' + str(
                len(train_cluster_target_words
                    )) + ' samples for this inflection type. skipping'
            continue
        else:
            print 'now evaluating model for cluster ' + str(cluster_index + 1) + '/' + \
                  str(len(train_cluster_to_data_indices)) + ': ' + cluster_type + ' with ' + \
                  str(len(train_cluster_target_words)) + ' examples'

        # test best model

        test_cluster_source_words = [
            test_source_words[i]
            for i in test_cluster_to_data_indices[cluster_type]
        ]
        test_cluster_target_words = [
            test_target_words[i]
            for i in test_cluster_to_data_indices[cluster_type]
        ]
        test_cluster_source_feat_dicts = [
            test_source_feat_dicts[i]
            for i in test_cluster_to_data_indices[cluster_type]
        ]
        test_cluster_target_feat_dicts = [
            test_target_feat_dicts[i]
            for i in test_cluster_to_data_indices[cluster_type]
        ]

        # load best model
        best_model, encoder_frnn, encoder_rrnn, decoder_rnn = load_best_model(
            str(cluster_index), alphabet, results_file_path, input_dim,
            hidden_dim, layers, feature_alphabet, feat_input_dim,
            feature_types)

        lang = train_path.split('/')[-1].replace('-task{0}-train'.format('1'),
                                                 '')

        # handle greedy prediction
        if nbest == 1:
            is_nbest = False
            predicted_templates = task2_ms2s.predict_templates(
                best_model, decoder_rnn, encoder_frnn, encoder_rrnn,
                alphabet_index, inverse_alphabet_index,
                test_cluster_source_words, test_cluster_source_feat_dicts,
                test_cluster_target_feat_dicts, feat_index, feature_types)

            accuracy = task2_ms2s.evaluate_model(
                predicted_templates,
                test_cluster_source_words,
                test_cluster_source_feat_dicts,
                test_cluster_target_words,
                test_cluster_target_feat_dicts,
                feature_types,
                print_results=False)
            accuracies.append(accuracy)
            print '{0} {1} accuracy: {2}'.format(lang, cluster_type,
                                                 accuracy[1])

            # get predicted_templates in the same order they appeared in the original file
            # iterate through them and foreach concat morph, lemma, features in order to print later in the task format
            for i in test_cluster_to_data_indices[cluster_type]:
                joint_index = test_source_words[i] + ':' + common.get_morph_string(test_source_feat_dicts[i],
                                                                                   feature_types) \
                              + ':' + common.get_morph_string(test_target_feat_dicts[i], feature_types)
                inflection = task2_ms2s.instantiate_template(
                    predicted_templates[joint_index], test_source_words[i])
                final_results[i] = (test_source_words[i],
                                    test_source_feat_dicts[i], inflection,
                                    test_target_feat_dicts[i])

            micro_average_accuracy = accuracy[1]

        # handle n-best prediction
        else:
            is_nbest = True

            predicted_nbset_templates = task2_ms2s.predict_nbest_templates(
                best_model, decoder_rnn, encoder_frnn, encoder_rrnn,
                alphabet_index, inverse_alphabet_index,
                test_cluster_source_words, test_cluster_source_feat_dicts,
                test_cluster_target_feat_dicts, feat_index, feature_types,
                nbest, test_cluster_target_words)

            # get predicted_templates in the same order they appeared in the original file
            # iterate through them and foreach concat morph, lemma, features in order to print later in the task format
            for i in test_cluster_to_data_indices[cluster_type]:
                joint_index = test_source_words[i] + ':' + common.get_morph_string(test_source_feat_dicts[i],
                                                                                   feature_types) \
                              + ':' + common.get_morph_string(test_target_feat_dicts[i], feature_types)

                nbest_inflections = []
                templates = [
                    t for (t, p) in predicted_nbset_templates[joint_index]
                ]
                for template in templates:
                    nbest_inflections.append(
                        task2_ms2s.instantiate_template(
                            template, test_source_words[i]))
                final_results[i] = (test_source_words[i],
                                    test_source_feat_dicts[i],
                                    nbest_inflections,
                                    test_target_feat_dicts[i])

            micro_average_accuracy = -1

    if 'test' in test_path:
        suffix = '.best.test'
    else:
        suffix = '.best'

    task2_joint_structured_inflection.write_results_file(
        hyper_params, micro_average_accuracy, train_path, test_path,
        results_file_path + suffix, sigmorphon_root_dir, final_results,
        is_nbest)
def main(train_path, test_path, results_file_path, sigmorphon_root_dir, input_dim, hidden_dim, epochs, layers,
         optimization, feat_input_dim, nbest):
    hyper_params = {'INPUT_DIM': input_dim, 'HIDDEN_DIM': hidden_dim, 'EPOCHS': epochs, 'LAYERS': layers,
                    'MAX_PREDICTION_LEN': MAX_PREDICTION_LEN, 'OPTIMIZATION': optimization, 'NBEST': nbest}

    print 'train path = ' + str(train_path)
    print 'test path =' + str(test_path)
    for param in hyper_params:
        print param + '=' + str(hyper_params[param])

    # load data
    (train_target_words, train_source_words, train_target_feat_dicts,
     train_source_feat_dicts) = prepare_sigmorphon_data.load_data(
        train_path, 2)
    (test_target_words, test_source_words, test_target_feat_dicts,
     test_source_feat_dicts) = prepare_sigmorphon_data.load_data(
        test_path, 2)
    alphabet, feature_types = prepare_sigmorphon_data.get_alphabet(train_target_words, train_source_words,
                                                                   train_target_feat_dicts, train_source_feat_dicts)

    # used for character dropout
    alphabet.append(NULL)
    alphabet.append(UNK)

    # used during decoding
    alphabet.append(EPSILON)
    alphabet.append(BEGIN_WORD)
    alphabet.append(END_WORD)

    feature_alphabet = common.get_feature_alphabet(train_source_feat_dicts + train_target_feat_dicts)
    feature_alphabet.append(UNK_FEAT)

    # add indices to alphabet - used to indicate when copying from lemma to word
    for marker in [str(i) for i in xrange(MAX_PREDICTION_LEN)]:
        alphabet.append(marker)

    # feat 2 int
    feat_index = dict(zip(feature_alphabet, range(0, len(feature_alphabet))))

    # char 2 int
    alphabet_index = dict(zip(alphabet, range(0, len(alphabet))))
    inverse_alphabet_index = {index: char for char, index in alphabet_index.items()}

    # cluster the data by POS type (features)
    # TODO: do we need to cluster on both source and target feats? 
    #       probably enough to cluster on source here becasue pos will be same
    #       (no derivational morphology in this task)
    train_cluster_to_data_indices = common.cluster_data_by_pos(train_source_feat_dicts)
    test_cluster_to_data_indices = common.cluster_data_by_pos(test_source_feat_dicts)

    # cluster the data by inflection type (features)
    # train_cluster_to_data_indices = common.cluster_data_by_morph_type(train_feat_dicts, feature_types)
    # test_cluster_to_data_indices = common.cluster_data_by_morph_type(test_feat_dicts, feature_types)

    accuracies = []
    final_results = {}

    # factored model: new model per inflection type
    for cluster_index, cluster_type in enumerate(train_cluster_to_data_indices):

        # get the inflection-specific data
        train_cluster_target_words = [train_target_words[i] for i in train_cluster_to_data_indices[cluster_type]]
        if len(train_cluster_target_words) < 1:
            print 'only ' + str(len(train_cluster_target_words)) + ' samples for this inflection type. skipping'
            continue
        else:
            print 'now evaluating model for cluster ' + str(cluster_index + 1) + '/' + \
                  str(len(train_cluster_to_data_indices)) + ': ' + cluster_type + ' with ' + \
                  str(len(train_cluster_target_words)) + ' examples'

        # test best model

        test_cluster_source_words = [test_source_words[i] for i in test_cluster_to_data_indices[cluster_type]]
        test_cluster_target_words = [test_target_words[i] for i in test_cluster_to_data_indices[cluster_type]]
        test_cluster_source_feat_dicts = [test_source_feat_dicts[i] for i in test_cluster_to_data_indices[cluster_type]]
        test_cluster_target_feat_dicts = [test_target_feat_dicts[i] for i in test_cluster_to_data_indices[cluster_type]]

        # load best model
        best_model, params = load_best_model(str(cluster_index), alphabet,
                                                                              results_file_path, input_dim,
                                                                              hidden_dim, layers,
                                                                              feature_alphabet, feat_input_dim,
                                                                              feature_types)

        lang = train_path.split('/')[-1].replace('-task{0}-train'.format('1'), '')

        # handle greedy prediction
        if nbest == 1:
            is_nbest = False
            predicted_templates = task2_ms2s.predict_templates(
                best_model,
                params,
                alphabet_index,
                inverse_alphabet_index,
                test_cluster_source_words,
                test_cluster_source_feat_dicts,
                test_cluster_target_feat_dicts,
                feat_index,
                feature_types)

            accuracy = task2_ms2s.evaluate_model(predicted_templates,
                                                 test_cluster_source_words,
                                                 test_cluster_source_feat_dicts,
                                                 test_cluster_target_words,
                                                 test_cluster_target_feat_dicts,
                                                 feature_types,
                                                 print_results=False)
            accuracies.append(accuracy)
            print '{0} {1} accuracy: {2}'.format(lang, cluster_type, accuracy[1])

            # get predicted_templates in the same order they appeared in the original file
            # iterate through them and foreach concat morph, lemma, features in order to print later in the task format
            for i in test_cluster_to_data_indices[cluster_type]:
                joint_index = test_source_words[i] + ':' + common.get_morph_string(test_source_feat_dicts[i],
                                                                                   feature_types) \
                              + ':' + common.get_morph_string(test_target_feat_dicts[i], feature_types)
                inflection = task2_ms2s.instantiate_template(
                    predicted_templates[joint_index], test_source_words[i])
                final_results[i] = (
                test_source_words[i], test_source_feat_dicts[i], inflection, test_target_feat_dicts[i])

            micro_average_accuracy = accuracy[1]

        # handle n-best prediction
        else:
            is_nbest = True

            predicted_nbset_templates = task2_ms2s.predict_nbest_templates(
                best_model,
                params,
                alphabet_index,
                inverse_alphabet_index,
                test_cluster_source_words,
                test_cluster_source_feat_dicts,
                test_cluster_target_feat_dicts,
                feat_index,
                feature_types,
                nbest,
                test_cluster_target_words)

            # get predicted_templates in the same order they appeared in the original file
            # iterate through them and foreach concat morph, lemma, features in order to print later in the task format
            for i in test_cluster_to_data_indices[cluster_type]:
                joint_index = test_source_words[i] + ':' + common.get_morph_string(test_source_feat_dicts[i],
                                                                                   feature_types) \
                              + ':' + common.get_morph_string(test_target_feat_dicts[i], feature_types)

                nbest_inflections = []
                templates = [t for (t, p) in predicted_nbset_templates[joint_index]]
                for template in templates:
                    nbest_inflections.append(
                        task2_ms2s.instantiate_template(
                            template,
                            test_source_words[i]))
                final_results[i] = (
                test_source_words[i], test_source_feat_dicts[i], nbest_inflections, test_target_feat_dicts[i])

            micro_average_accuracy = -1

    if 'test' in test_path:
        suffix = '.best.test'
    else:
        suffix = '.best'

    task2_joint_structured_inflection.write_results_file(hyper_params,
                                                         micro_average_accuracy,
                                                         train_path,
                                                         test_path,
                                                         results_file_path + suffix,
                                                         sigmorphon_root_dir,
                                                         final_results,
                                                         is_nbest)