def train(
        model: SoftmaxModel,
        datasets: typing.List[np.ndarray],
        num_epochs: int,
        learning_rate: float,
        batch_size: int,
        # Task 3 hyperparameters,
        use_shuffle: bool,
        use_momentum: bool,
        momentum_gamma: float):
    X_train, Y_train, X_val, Y_val, X_test, Y_test = datasets

    # Utility variables
    num_batches_per_epoch = X_train.shape[0] // batch_size
    num_steps_per_val = num_batches_per_epoch // 5
    # Tracking variables to track loss / accuracy
    train_loss = {}
    val_loss = {}
    train_accuracy = {}
    val_accuracy = {}

    global_step = 0
    for epoch in range(num_epochs):
        # Task 3a
        # Shuffling before next epoch
        shuffle_in_unison(X_train, Y_train)
        for step in range(num_batches_per_epoch):
            start = step * batch_size
            end = start + batch_size
            X_batch, Y_batch = X_train[start:end], Y_train[start:end]

            y_hat = model.forward(X_batch)
            model.backward(X_batch, y_hat, Y_batch)
            model.ws[0] += -1 * learning_rate * model.grads[0]
            model.ws[1] += -1 * learning_rate * model.grads[1]

            # Track train / validation loss / accuracy
            # every time we progress 20% through the dataset
            if (global_step % num_steps_per_val) == 0:
                _val_loss = cross_entropy_loss(Y_val, model.forward(X_val))
                val_loss[global_step] = _val_loss

                _train_loss = cross_entropy_loss(Y_batch, y_hat)
                train_loss[global_step] = _train_loss

                train_accuracy[global_step] = calculate_accuracy(
                    X_train, Y_train, model)
                val_accuracy[global_step] = calculate_accuracy(
                    X_val, Y_val, model)

            global_step += 1

    return model, train_loss, val_loss, train_accuracy, val_accuracy
示例#2
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    logits = model.forward(X)
    outputs = np.zeros_like(logits)
    outputs[np.arange(len(logits)), logits.argmax(1)] = 1
    accuracy = np.mean((outputs == targets).all(1))
    return accuracy
示例#3
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    y_hat = np.array(model.forward(X))
    y_predicted_position = np.argmax(y_hat, axis=1)
    y_position = np.argmax(targets, axis=1)
    accuracy = np.count_nonzero(
        y_position == y_predicted_position) / X.shape[0]
    return accuracy
示例#4
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # Creating vector of predictions (1 or 0)
    predictions = np.argmax(model.forward(X), axis=1)

    # Counting everytime prediction equals target. Then divding by batch size
    accuracy = np.count_nonzero(
        predictions == np.argmax(targets, axis=1)) / X.shape[0]
    return accuracy
示例#5
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    output = model.forward(X)
    predictions = one_hot_encode(np.array([np.argmax(output, axis=1)]).T, 10)
    correct_pred = np.count_nonzero(targets * predictions)
    total_pred = output.shape[0]
    accuracy = correct_pred / total_pred

    return accuracy
示例#6
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """

    # perform predictions
    Yhat = model.forward(X)

    # calculate accurancy by dividing the correct predictions with the total number of predictions
    accuracy = (Yhat.argmax(axis=1) == targets.argmax(axis=1)).mean()
    return accuracy
示例#7
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    outputs = model.forward(X)
    max_outputs = np.argmax(outputs, axis=1)
    max_targets = np.argmax(targets, axis=1)

    sum = outputs.shape[0] - np.count_nonzero(max_outputs - max_targets)
    accuracy = sum / outputs.shape[0]
    return accuracy
示例#8
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    # First computation of the prediction
    outputs = model.forward(X)

    # Convert the prediction into 0 and 1 by setting as 1 the highest value in the 10 outputs, the rest will be 0.
    accuracy = np.sum(
        outputs.argmax(1) == targets.argmax(1)) / targets.shape[0]

    return accuracy
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    number_of_predictions = X.shape[0]
    number_of_rights = 0
    y_hat = model.forward(X)
    for i in range(0, number_of_predictions):
        y_hat[i] = np.around(y_hat[i])
        if np.array_equal(y_hat[i], targets[i]):
            number_of_rights += 1
    accuracy = number_of_rights / number_of_predictions
    return accuracy
示例#10
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)

    predictions = model.forward(X)
    num_predictions = predictions.shape[0]

    correct_predictions = np.sum(
        np.argmax(predictions, axis=1) == np.argmax(targets, axis=1))

    return correct_predictions / num_predictions
示例#11
0
文件: task3.py 项目: matmons/TDT4265
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    predictions = model.forward(X)
    accuracy = 0
    for n in range(X.shape[0]):
        prediction = np.argmax(predictions[n, :])
        target = np.argmax(targets[n, :])
        if prediction == target:
            accuracy += 1

    return accuracy / X.shape[0]
示例#12
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray, model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    # My prediction
    y_pred = model.forward(X)
    y_pred_int = np.zeros_like(y_pred)
    correctly_guessed = 0
    for idx in range(y_pred.shape[0]):
        actual_pred = y_pred[idx, :]
        y_pred_int[idx, :] = [1 if pred==np.max(actual_pred) else 0 for pred in actual_pred]
        correctly_guessed += np.sum((targets[idx, :] == y_pred_int[idx, :]).all())

    accuracy = correctly_guessed / X.shape[0]
    return accuracy
示例#13
0
def calculate_accuracy(X: np.ndarray, targets: np.ndarray, model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """

    # forward pass
    logits = model.forward(X)

    # finding the index of the max values for both arrays
    logits = logits.argmax(axis=1)
    targets = targets.argmax(axis=1)

    # counting the equal entries and averaging
    accuracy = np.count_nonzero(np.equal(targets, logits)) / X.shape[0]

    return accuracy
示例#14
0
文件: task3.py 项目: tare1914/Datasyn
def calculate_accuracy(X: np.ndarray, targets: np.ndarray,
                       model: SoftmaxModel) -> float:
    """
    Args:
        X: images of shape [batch size, 785]
        targets: labels/targets of each image of shape: [batch size, 10]
        model: model of class SoftmaxModel
    Returns:
        Accuracy (float)
    """
    # TODO: Implement this function (task 3c)
    accuracy = 0

    lgts = model.forward(X)

    lgts_max = np.argmax(lgts, axis=1)
    targets_max = np.argmax(targets, axis=1)

    accuracy = ((1 / targets.shape[0]) *
                np.sum([(1 if l == t else 0)
                        for (l, t) in zip(lgts_max, targets_max)]))
    return accuracy
示例#15
0
    learning_rate = 0.01
    batch_size = 128
    l2_reg_lambda = 0
    shuffle_dataset = True

    # Load dataset
    X_train, Y_train, X_val, Y_val = utils.load_full_mnist()
    X_train = pre_process_images(X_train)
    X_val = pre_process_images(X_val)
    Y_train = one_hot_encode(Y_train, 10)
    Y_val = one_hot_encode(Y_val, 10)

    # ANY PARTS OF THE CODE BELOW THIS CAN BE CHANGED.

    # Intialize model
    model = SoftmaxModel(l2_reg_lambda)
    # Train model
    trainer = SoftmaxTrainer(
        model,
        learning_rate,
        batch_size,
        shuffle_dataset,
        X_train,
        Y_train,
        X_val,
        Y_val,
    )
    train_history, val_history = trainer.train(num_epochs)

    print("Final Train Cross Entropy Loss:",
          cross_entropy_loss(Y_train, model.forward(X_train)))
示例#16
0
    )
    train_history_reg01, val_history_reg01 = trainer.train(num_epochs)

    '''

    # You can finish the rest of task 4 below this point.

    #plotting for different lambdas:
    l2_lambdas = [1, .1, .01, .001]

    val_acc = []

    weights = []

    for i in l2_lambdas:
        model = SoftmaxModel(l2_reg_lambda=i)
        #    Train model
        trainer = SoftmaxTrainer(
            model,
            learning_rate,
            batch_size,
            shuffle_dataset,
            X_train,
            Y_train,
            X_val,
            Y_val,
        )
        train_history, val_history = trainer.train(num_epochs)
        val_acc.append(val_history["accuracy"])
        weights.append(model.w)
示例#17
0
    learning_rate = 0.01
    batch_size = 128
    l2_reg_lambda = 0
    shuffle_dataset = True

    # Load dataset
    X_train, Y_train, X_val, Y_val = utils.load_full_mnist()
    X_train = pre_process_images(X_train)
    X_val = pre_process_images(X_val)
    Y_train = one_hot_encode(Y_train, 10)
    Y_val = one_hot_encode(Y_val, 10)

    # ANY PARTS OF THE CODE BELOW THIS CAN BE CHANGED.

    # Intialize model
    model = SoftmaxModel(l2_reg_lambda)
    # Train model
    trainer = SoftmaxTrainer(
        model, learning_rate, batch_size, shuffle_dataset,
        X_train, Y_train, X_val, Y_val,
    )
    train_history, val_history = trainer.train(num_epochs)

    print("Final Train Cross Entropy Loss:",
          cross_entropy_loss(Y_train, model.forward(X_train)))
    print("Final Validation Cross Entropy Loss:",
          cross_entropy_loss(Y_val, model.forward(X_val)))
    print("Final Train accuracy:", calculate_accuracy(X_train, Y_train, model))
    print("Final Validation accuracy:", calculate_accuracy(X_val, Y_val, model))

    plt.ylim([0.2, .6])
示例#18
0
    learning_rate = 0.01
    batch_size = 128
    l2_reg_lambda = 0
    shuffle_dataset = True

    # Load dataset
    X_train, Y_train, X_val, Y_val = utils.load_full_mnist()
    X_train = pre_process_images(X_train)
    X_val = pre_process_images(X_val)
    Y_train = one_hot_encode(Y_train, 10)
    Y_val = one_hot_encode(Y_val, 10)

    # ANY PARTS OF THE CODE BELOW THIS CAN BE CHANGED.

    # Initialize the model
    model_a = SoftmaxModel(X_train.shape[1], Y_train.shape[1], l2_reg_lambda)
    # Train model
    trainer = SoftmaxTrainer(
        model_a,
        learning_rate,
        batch_size,
        shuffle_dataset,
        X_train,
        Y_train,
        X_val,
        Y_val,
    )
    train_history, val_history = trainer.train(num_epochs)

    print("Final Train Cross Entropy Loss:",
          cross_entropy_loss(Y_train, model_a.forward(X_train)))
示例#19
0
    X_train = pre_process_images(X_train)
    X_val = pre_process_images(X_val)
    Y_train = one_hot_encode(Y_train, 10)
    Y_val = one_hot_encode(Y_val, 10)
    # ANY PARTS OF THE CODE BELOW THIS CAN BE CHANGED.

    # Train a model with L2 regularization (task 4b)
    l2_lambdas = [1, .1, .01, .001, 0]

    norm_list = []
    train_history_list = []
    val_history_list = []

    for l in l2_lambdas:
        # Intialize model
        model = SoftmaxModel(l)

        # Train model
        trainer = SoftmaxTrainer(
            model,
            learning_rate,
            batch_size,
            shuffle_dataset,
            X_train,
            Y_train,
            X_val,
            Y_val,
        )
        train_history, val_history = trainer.train(num_epochs)
        train_history_list.append(train_history)
        val_history_list.append(val_history)
    Y_val = one_hot_encode(Y_val, 10)
    Y_test = one_hot_encode(Y_test, 10)
    # Hyperparameters
    num_epochs = 20
    learning_rate = .1
    batch_size = 32
    neurons_per_layer = [64, 10]
    momentum_gamma = .9  # Task 3 hyperparameter

    # Settings for task 3. Keep all to false for task 2.
    use_shuffle = False
    use_improved_sigmoid = False
    use_improved_weight_init = False
    use_momentum = False

    model = SoftmaxModel(neurons_per_layer, use_improved_sigmoid,
                         use_improved_weight_init)
    model, train_loss, val_loss, train_accuracy, val_accuracy = train(
        model, [X_train, Y_train, X_val, Y_val, X_test, Y_test],
        num_epochs=num_epochs,
        learning_rate=learning_rate,
        batch_size=batch_size,
        use_shuffle=use_shuffle,
        use_momentum=use_momentum,
        momentum_gamma=momentum_gamma)

    print("Final Train Cross Entropy Loss:",
          cross_entropy_loss(Y_train, model.forward(X_train)))
    print("Final Validation Cross Entropy Loss:",
          cross_entropy_loss(Y_val, model.forward(X_val)))
    print("Final Test Cross Entropy Loss:",
          cross_entropy_loss(Y_test, model.forward(X_test)))