def __init__(self, sModelName, sModelDir, sComment=None,dLearnerConfigArg=None): if self.bHTR: cFeatureDefinition = FeatureDefinition_PageXml_StandardOnes dFeatureConfig = { 'bMultiPage':False, 'bMirrorPage':False , 'n_tfidf_node':500, 't_ngrams_node':(2,4), 'b_tfidf_node_lc':False , 'n_tfidf_edge':250, 't_ngrams_edge':(2,4), 'b_tfidf_edge_lc':False } else: cFeatureDefinition = FeatureDefinition_PageXml_StandardOnes_noText dFeatureConfig = { 'bMultiPage':False, 'bMirrorPage':False , 'n_tfidf_node':None, 't_ngrams_node':None, 'b_tfidf_node_lc':None , 'n_tfidf_edge':None, 't_ngrams_edge':None, 'b_tfidf_edge_lc':None } if sComment is None: sComment = sModelName DU_ECN_Task.__init__(self , sModelName, sModelDir , dFeatureConfig=dFeatureConfig , dLearnerConfig= dLearnerConfigArg if dLearnerConfigArg is not None else self.dLearnerConfig , sComment=sComment , cFeatureDefinition=cFeatureDefinition , cModelClass=DU_Model_GAT ) if options.bBaseline: self.bsln_mdl = self.addBaseline_LogisticRegression() # use a LR model trained by GridSearch as baseline
def __init__(self, sModelName, sModelDir, sComment=None, dLearnerConfigArg=None): if sComment is None: sComment = sModelName if dLearnerConfigArg is not None and "ecn_ensemble" in dLearnerConfigArg: print('ECN_ENSEMBLE') DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig={}, dLearnerConfig=dLearnerConfigArg if dLearnerConfigArg is not None else self.dLearnerConfig, sComment=sComment, cFeatureDefinition=FeatureDefinition_PageXml_NoNodeFeat_v3, cModelClass=gcn.DU_Model_ECN.DU_Ensemble_ECN) else: #Default Case Single Model DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig={}, dLearnerConfig=dLearnerConfigArg if dLearnerConfigArg is not None else self.dLearnerConfig, sComment=sComment, cFeatureDefinition=FeatureDefinition_PageXml_NoNodeFeat_v3)
def __init__(self, sModelName, sModelDir, sComment=None, dLearnerConfigArg=None): traceln(self.bHTR) if self.bHTR: cFeatureDefinition = FeatureDefinition_PageXml_StandardOnes dFeatureConfig = { 'bMultiPage': False, 'bMirrorPage': False, 'n_tfidf_node': 300, 't_ngrams_node': (2, 4), 'b_tfidf_node_lc': False, 'n_tfidf_edge': 300, 't_ngrams_edge': (2, 4), 'b_tfidf_edge_lc': False } else: cFeatureDefinition = FeatureDefinition_PageXml_StandardOnes_noText # cFeatureDefinition = FeatureDefinition_PageXml_NoNodeFeat_v3 dFeatureConfig = {} if sComment is None: sComment = sModelName if dLearnerConfigArg is not None and "ecn_ensemble" in dLearnerConfigArg: traceln('ECN_ENSEMBLE') DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig=dFeatureConfig, dLearnerConfig=self.dLearnerConfig if dLearnerConfigArg is None else dLearnerConfigArg, sComment=sComment, cFeatureDefinition=cFeatureDefinition, cModelClass=gcn.DU_Model_ECN.DU_Ensemble_ECN) else: #Default Case Single Model DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig=dFeatureConfig, dLearnerConfig=self.dLearnerConfig if dLearnerConfigArg is None else dLearnerConfigArg, sComment=sComment, cFeatureDefinition=cFeatureDefinition)
def __init__(self, sModelName, sModelDir, sComment=None, dLearnerConfigArg=None): DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig={}, dLearnerConfig=dLearnerConfigArg if dLearnerConfigArg is not None else self.dLearnerConfig, sComment=sComment, cFeatureDefinition=FeatureDefinition_PageXml_NoNodeFeat_v3) if options.bBaseline: self.bsln_mdl = self.addBaseline_LogisticRegression( ) # use a LR model trained by GridSearch as baseline
def __init__(self, sModelName, sModelDir, sComment=None, dLearnerConfigArg=None): if sComment is None: sComment = sModelName DU_ECN_Task.__init__( self, sModelName, sModelDir, dFeatureConfig={}, dLearnerConfig=dLearnerConfigArg if dLearnerConfigArg is not None else self.dLearnerConfig, sComment=sComment, cFeatureDefinition= FeatureDefinition_PageXml_StandardOnes_noText, cModelClass=DU_Model_GAT) if options.bBaseline: self.bsln_mdl = self.addBaseline_LogisticRegression( ) # use a LR model trained by GridSearch as baseline
def predict(self, lsColDir): """ Return the list of produced files """ self.sXmlFilenamePattern = "*.mpxml" return DU_ECN_Task.predict(self, lsColDir)