def fittingLatex(self): from taurex.util.util import decode_string_array if not self.is_retrieval: raise Exception( 'HDF5 was not generated from retrieval, no fitting latex found' ) return decode_string_array(self.fd['Optimizer']['fit_parameter_latex'])
def load_generic_profile_from_hdf5(loc, module, identifier, profile_type=None, premade_dict=None, replacement_dict=None): if profile_type is None: profile_type = loc[identifier][()] temp_keys = list(loc.keys()) klass = class_for_name(module, profile_type) klass_kwargs = get_klass_args(klass) args_dict = premade_dict or {} repl_dict = replacement_dict or {} for kw in klass_kwargs: if kw in temp_keys: v = loc[kw][()] if isinstance(v, np.ndarray) and v.dtype.type is np.string_: from taurex.util.util import decode_string_array v = decode_string_array(v) if kw in repl_dict: args_dict[kw] = repl_dict[kw] else: args_dict[kw] = v return klass(**args_dict)
def load_chemistry_from_hdf5(loc, replacement_dict=None): from taurex.data.profiles.chemistry import TaurexChemistry from taurex.util.util import decode_string_array chemistry = load_generic_profile_from_hdf5( loc['Chemistry'], 'taurex.data.profiles.chemistry', 'chemistry_type', replacement_dict=replacement_dict) if isinstance(chemistry, TaurexChemistry): for mol in decode_string_array(loc['Chemistry']['active_gases'][()]): if mol not in chemistry._fill_gases: chemistry.addGas(load_gas_from_hdf5(loc['Chemistry'], mol)) for mol in decode_string_array(loc['Chemistry']['inactive_gases']): if mol not in chemistry._fill_gases: chemistry.addGas(load_gas_from_hdf5(loc['Chemistry'], mol)) return chemistry
def derivedLatex(self): from taurex.util.util import decode_string_array if not self.is_retrieval: raise Exception( 'HDF5 was not generated from retrieval, no fitting latex found' ) try: array = decode_string_array( self.fd['Optimizer']['derived_parameter_latex']) return [f'{c} (derived)' for c in array] except KeyError: return ['$\mu$ (derived)']
def inactiveGases(self): return decode_string_array( self.fd['ModelParameters']['Chemistry']['inactive_gases'])
def condensates(self): return decode_string_array( self.fd['ModelParameters']['Chemistry']['condensates'])