def testModelResultHandlerSkipsStaleBatch(
      self, _amqpUtilsMock,
      deserializeModelResult, connectDynamoDB, _gracefulCreateTable):
    """ Given a stale batch of model inference results, verify that it isn't
    saved to DynamoDB
    """

    # We're going to mostly mock out all of the arguments to
    # DynamoDBService.messageHandler() since it is normally called by amqp lib.
    # Then simulate the process of handling an inbound batch of model inference
    # results and assert that the appropriate put_item() calls are made at the
    # other end.

    message = amqp.messages.ConsumerMessage(
      body=Mock(),
      properties=Mock(headers=dict()),
      methodInfo=amqp.messages.MessageDeliveryInfo(consumerTag=Mock(),
                                                   deliveryTag=Mock(),
                                                   redelivered=False,
                                                   exchange=Mock(),
                                                   routingKey=""),
      ackImpl=Mock(),
      nackImpl=Mock())

    # We will have to bypass the normal serialize/deserialize phases to avoid
    # dependency on sqlalchemy rowproxy.  Instead, we'll just mock out the
    # AnomalyService.deserializeModelResult() call, returning an object that
    # approximates a batch of model inference results as much as possible

    ts = epochFromNaiveUTCDatetime(
      datetime.utcnow().replace(microsecond=0) -
      timedelta(days=DynamoDBService._FRESH_DATA_THRESHOLD_DAYS + 1))

    resultRow = dict(
      rowid=4790,
      ts=ts,
      value=9305.0,
      rawAnomaly=0.775,
      anomaly=0.999840891
    )

    metricId = "3b035a5916994f2bb950f5717138f94b"

    deserializeModelResult.return_value = dict(
      metric=dict(
        uid=metricId,
        name="XIGNITE.AGN.VOLUME",
        description="XIGNITE.AGN.VOLUME",
        resource="Resource-of-XIGNITE.AGN.VOLUME",
        location = "",
        datasource = "custom",
        spec=dict(
          userInfo=dict(
            symbol="AGN",
            metricType="StockVolume",
            metricTypeName="Stock Volume"
          )
        )
      ),

      results=[resultRow]
    )

    service = DynamoDBService()
    publishMetricDataPatch = patch.object(
      service, "_publishMetricData",
      spec_set=service._publishMetricData)
    publishInstancePatch = patch.object(
      service, "_publishInstanceDataHourly",
      spec_set=service._publishInstanceDataHourly)
    with publishMetricDataPatch as publishMetricDataMock, \
        publishInstancePatch as publishInstanceMock:
      service.messageHandler(message)

      deserializeModelResult.assert_called_once_with(message.body)
      self.assertEqual(publishMetricDataMock.call_count, 0)
      self.assertEqual(publishInstanceMock.call_count, 0)
  def testMessageHandlerRoutesTweetDataToDynamoDB(
      self, _amqpUtilsMock,
      connectDynamoDB, _gracefulCreateTable):
    """ Simple test for twitter interface
    """

##    channel = Mock()
##    method = Mock(routing_key="taurus.data.non-metric.twitter")
##    properties = Mock()

    tweetData = [
      {
        "metric_name": "Metric Name",
        "tweet_uid": "3b035a5916994f2bb950f5717138f94b",
        "created_at": "2015-02-19T19:43:24.870109",
        "agg_ts": "2015-02-19T19:43:24.870118",
        "text": "Tweet text",
        "userid": "10",
        "username": "******",
        "retweet_count": "0"
      }
    ]

    message = amqp.messages.ConsumerMessage(
      body=json.dumps(tweetData),
      properties=Mock(),
      methodInfo=amqp.messages.MessageDeliveryInfo(
        consumerTag=Mock(),
        deliveryTag=Mock(),
        redelivered=False,
        exchange=Mock(),
        routingKey="taurus.data.non-metric.twitter"),
      ackImpl=Mock(),
      nackImpl=Mock())

    service = DynamoDBService()
    service.messageHandler(message)

    (service
     ._metric_tweets
     .batch_write
     .return_value
     .__enter__
     .return_value
     .put_item
     .assert_called_once_with(
      data=OrderedDict(
        [
          ("metric_name_tweet_uid",
           "Metric Name-3b035a5916994f2bb950f5717138f94b"),
          ("metric_name", "Metric Name"),
          ("tweet_uid", "3b035a5916994f2bb950f5717138f94b"),
          ("created_at", "2015-02-19T19:43:24.870109"),
          ("agg_ts", "2015-02-19T19:43:24.870118"),
          ("text", "Tweet text"),
          ("userid", "10"),
          ("username", "Tweet username"),
          ("retweet_count", "0")
        ]
      ),
      overwrite=True))
  def testMessageHandlerRoutesMetricDataToDynamoDB(
      self, _amqpUtilsMock,
      deserializeModelResult, connectDynamoDB, _gracefulCreateTable):
    """ Given a batch of model inference results, send the appropriate data to
    DynamoDB tables according to design in an environment where both rabbitmq
    and dynamodb are mocked out
    """

    # We're going to mostly mock out all of the arguments to
    # DynamoDBService.messageHandler() since it is normally called by amqp lib.
    # Then simulate the process of handling an inbound batch of model inference
    # results and assert that the appropriate put_item() calls are made at the
    # other end.
    message = amqp.messages.ConsumerMessage(
      body=Mock(),
      properties=Mock(headers=dict()),
      methodInfo=amqp.messages.MessageDeliveryInfo(consumerTag=Mock(),
                                                   deliveryTag=Mock(),
                                                   redelivered=False,
                                                   exchange=Mock(),
                                                   routingKey=""),
      ackImpl=Mock(),
      nackImpl=Mock())

    # We will have to bypass the normal serialize/deserialize phases to avoid
    # dependency on sqlalchemy rowproxy.  Instead, we'll just mock out the
    # AnomalyService.deserializeModelResult() call, returning an object that
    # approximates a batch of model inference results as much as possible

    now = int(time.time())

    resultRow = dict(
      rowid=4790,
      ts=now,
      value=9305.0,
      rawAnomaly=0.775,
      anomaly=0.999840891
    )

    metricId = "3b035a5916994f2bb950f5717138f94b"

    deserializeModelResult.return_value = dict(
      metric=dict(
        uid=metricId,
        name="XIGNITE.AGN.VOLUME",
        description="XIGNITE.AGN.VOLUME",
        resource="Resource-of-XIGNITE.AGN.VOLUME",
        location = "",
        datasource = "custom",
        spec=dict(
          userInfo=dict(
            symbol="AGN",
            metricType="StockVolume",
            metricTypeName="Stock Volume"
          )
        )
      ),

      results=[resultRow]
    )

    service = DynamoDBService()
    service.messageHandler(message)

    deserializeModelResult.assert_called_once_with(message.body)

    mockMetricDataPutItem = (
      service._metric_data.batch_write.return_value.__enter__
      .return_value.put_item)
    data = dynamodb_service.convertInferenceResultRowToMetricDataItem(
      metricId, resultRow)
    mockMetricDataPutItem.assert_called_once_with(data=data._asdict(),
                                                  overwrite=True)

    self.assertFalse(service._metric_tweets.batch_write.called)


    # Make sure that a model command result doesn't get mistaken for an
    # inference result batch
    deserializeModelResult.return_value = Mock()
    message.properties = Mock(headers=dict(dataType="model-cmd-result"))
    message.body = Mock()
    service = DynamoDBService()
    with patch.object(service, "_handleModelCommandResult",
                      spec_set=service._handleModelCommandResult):
      service.messageHandler(message)
      service._handleModelCommandResult.assert_called_once_with(message.body)