def dimacs_td_ct(tdfname, synthg=False): """ tree decomp to clique-tree """ if isinstance(tdfname, list): [dimacs_td_ct(f) for f in tdfname] # print '... input file:', tdfname fname = tdfname graph_name = os.path.basename(fname) gname = graph_name.split('.')[0] if synthg: gfname = 'datasets/' + gname + ".dimacs" else: gfname = "datasets/out." + gname print os.path.basename(fname).split('.')[-2] tdh = os.path.basename(fname).split('.')[-2] # tree decomp heuristic tfname = gname + "." + tdh if synthg: G = load_edgelist(tdfname.split('.')[0] + ".dimacs") else: G = load_edgelist(gfname) if DEBUG: print nx.info(G) if not os.path.exists(fname): print fname, 'this file does not exist (possible failure in the TD step)' return '' with open(fname, 'r') as f: # read tree decomp from inddgo lines = f.readlines() lines = [x.rstrip('\r\n') for x in lines] cbags = {} bags = [x.split() for x in lines if x.startswith('B')] for b in bags: cbags[int(b[1])] = [int(x) for x in b[3:]] # what to do with bag size? edges = [x.split()[1:] for x in lines if x.startswith('e')] edges = [[int(k) for k in x] for x in edges] tree = defaultdict(set) for s, t in edges: tree[frozenset(cbags[s])].add(frozenset(cbags[t])) if DEBUG: print '.. # of keys in `tree`:', len(tree.keys()) if DEBUG: print tree.keys() root = list(tree)[0] if DEBUG: print '.. Root:', root root = frozenset(cbags[1]) if DEBUG: print '.. Root:', root T = td.make_rooted(tree, root) if DEBUG: print '.. T rooted:', len(T) # nfld.unfold_2wide_tuple(T) # lets me display the tree's frozen sets T = phrg.binarize(T) prod_rules = {} td.new_visit(T, G, prod_rules) if DEBUG: print "--------------------" if DEBUG: print "- Production Rules -" if DEBUG: print "--------------------" for k in prod_rules.iterkeys(): if DEBUG: print k s = 0 for d in prod_rules[k]: s += prod_rules[k][d] for d in prod_rules[k]: prod_rules[k][d] = float(prod_rules[k][d]) / float( s) # normailization step to create probs not counts. if DEBUG: print '\t -> ', d, prod_rules[k][d] rules = [] id = 0 for k, v in prod_rules.iteritems(): sid = 0 for x in prod_rules[k]: rhs = re.findall("[^()]+", x) rules.append( ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])) if DEBUG: print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]) sid += 1 id += 1 df = pd.DataFrame(rules) outdf_fname = "ProdRules/" + tfname + "_iprules.tsv" if not os.path.isfile(outdf_fname): # print '...',outdf_fname, "written" df.to_csv(outdf_fname, header=False, index=False, sep="\t") else: print '\t', outdf_fname, "file exists" return outdf_fname
def get_hrg_production_rules(edgelist_data_frame, graph_name, tw=False, n_subg=2, n_nodes=300): from tdec.growing import derive_prules_from nslog("get_hrg_production_rules") df = edgelist_data_frame if df.shape[1] == 4: G = nx.from_pandas_dataframe(df, 'src', 'trg', edge_attr=True) # whole graph elif df.shape[1] == 3: G = nx.from_pandas_dataframe(df, 'src', 'trg', ['ts']) # whole graph else: G = nx.from_pandas_dataframe(df, 'src', 'trg') G.name = graph_name G.remove_edges_from(G.selfloop_edges()) giant_nodes = max(nx.connected_component_subgraphs(G), key=len) G = nx.subgraph(G, giant_nodes) num_nodes = G.number_of_nodes() phrg.graph_checks(G) if DBG: print if DBG: print "--------------------" if not DBG: print "-Tree Decomposition-" if DBG: print "--------------------" prod_rules = {} K = n_subg n = n_nodes if num_nodes >= 500: print 'Grande' for Gprime in gs.rwr_sample(G, K, n): T = td.quickbb(Gprime) root = list(T)[0] T = td.make_rooted(T, root) T = phrg.binarize(T) root = list(T)[0] root, children = T #td.new_visit(T, G, prod_rules, TD) td.new_visit(T, G, prod_rules) else: T = td.quickbb(G) root = list(T)[0] T = td.make_rooted(T, root) T = phrg.binarize(T) root = list(T)[0] root, children = T # td.new_visit(T, G, prod_rules, TD) td.new_visit(T, G, prod_rules) if tw: print_treewidth(T) exit() ## -- print("prod_rules:", len(prod_rules), type(prod_rules)) if DBG: print if DBG: print "--------------------" if DBG: print "- Production Rules -" if DBG: print "--------------------" for k in prod_rules.iterkeys(): if DBG: print k s = 0 for d in prod_rules[k]: s += prod_rules[k][d] for d in prod_rules[k]: prod_rules[k][d] = float(prod_rules[k][d]) / float( s) # normailization step to create probs not counts. if DBG: print '\t -> ', d, prod_rules[k][d] rules = [] id = 0 for k, v in prod_rules.iteritems(): sid = 0 for x in prod_rules[k]: rhs = re.findall("[^()]+", x) rules.append( ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])) if DBG: print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]) sid += 1 id += 1 df = pd.DataFrame(rules) print "++++++++++" df.to_csv('ProdRules/{}_prs.tsv'.format(G.name), header=False, index=False, sep="\t") if os.path.exists('ProdRules/{}_prs.tsv'.format(G.name)): print 'Saved', 'ProdRules/{}_prs.tsv'.format(G.name) else: print "Trouble saving" print "-----------" print[type(x) for x in rules[0]] ''' Graph Generation of Synthetic Graphs Grow graphs usigng the union of rules from sampled sugbgraphs to predict the target order of the original graph ''' hStars = grow_exact_size_hrg_graphs_from_prod_rules( rules, graph_name, G.number_of_nodes(), 10) print '... hStart graphs:', len(hStars) if 0: metricx = [ 'degree', 'hops', 'clust', 'assort', 'kcore', 'eigen', 'gcd' ] metricx = ['gcd'] metrics.network_properties([G], metricx, hStars, name=graph_name, out_tsv=False)
def isomorphic_test_from_dimacs_tree(orig, tdfname, gname="", iargs=""): # if whole tree path # else, assume a path fragment print '... path fragment:', tdfname print '... input graph :', orig G = load_edgelist(orig) # load edgelist into a graph obj N = G.number_of_nodes() M = G.number_of_edges() # +++ Graph Checks if G is None: sys.exit(1) G.remove_edges_from(G.selfloop_edges()) giant_nodes = max(nx.connected_component_subgraphs(G), key=len) G = nx.subgraph(G, giant_nodes) graph_checks(G) # --- graph checks G.name = gname files = glob(tdfname+"*.dimacs.tree") prod_rules = {} stacked_df = pd.DataFrame() mat_dict = {} for i,x in enumerate(sorted(files)): mat_dict[os.path.basename(x).split(".")[0].split("_")[-1]]=i if DBG: print os.path.basename(x).split(".")[0].split("_")[-1] for tfname in files: tname = os.path.basename(tfname).split(".") tname = "_".join(tname[:2]) with open(tfname, 'r') as f: # read tree decomp from inddgo lines = f.readlines() lines = [x.rstrip('\r\n') for x in lines] cbags = {} bags = [x.split() for x in lines if x.startswith('B')] for b in bags: cbags[int(b[1])] = [int(x) for x in b[3:]] # what to do with bag size? edges = [x.split()[1:] for x in lines if x.startswith('e')] edges = [[int(k) for k in x] for x in edges] tree = defaultdict(set) for s, t in edges: tree[frozenset(cbags[s])].add(frozenset(cbags[t])) if DBG: print '.. # of keys in `tree`:', len(tree.keys()) root = list(tree)[0] root = frozenset(cbags[1]) T = td.make_rooted(tree, root) # nfld.unfold_2wide_tuple(T) # lets me display the tree's frozen sets T = phrg.binarize(T) # root = list(T)[0] # root, children = T # td.new_visit(T, G, prod_rules, TD) # print ">>",len(T) td.new_visit(T, G, prod_rules) for k in prod_rules.iterkeys(): if DBG: print k s = 0 for d in prod_rules[k]: s += prod_rules[k][d] for d in prod_rules[k]: prod_rules[k][d] = float(prod_rules[k][d]) / float(s) # normailization step to create probs not counts. if DBG: print '\t -> ', d, prod_rules[k][d] if DBG: print "--------------------" if DBG: print '- Prod. Rules' if DBG: print "--------------------" rules = [] id = 0 for k, v in prod_rules.iteritems(): sid = 0 for x in prod_rules[k]: rhs = re.findall("[^()]+", x) rules.append(("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])) if DBG: print "r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x] sid += 1 id += 1 df = pd.DataFrame(rules) print df.shape df['cate'] = tname stacked_df = pd.concat([df, stacked_df]) if iargs['cnts']: return stacked_df,mat_dict else: np_sqr_mtrx = jaccard_coeff_isomorphic_rules_check(stacked_df, mat_dict) print gname df = pd.DataFrame(np_sqr_mtrx, columns=[x for x in sorted(mat_dict.keys())]) df.index = sorted(mat_dict.keys()) df.to_csv("Results/{}_isom_jaccardsim.tsv".format(gname), sep=",") return stacked_df,mat_dict #ToDo: not sure if I want to return this
def dimacs_td_ct_fast(oriG, tdfname): """ tree decomp to clique-tree parameters: orig: filepath to orig (input) graph in edgelist tdfname: filepath to tree decomposition from INDDGO synthg: when the input graph is a syth (orig) graph Todo: currently not handling sythg in this version of dimacs_td_ct """ G = oriG if G is None: return (1) graph_checks(G) # --- graph checks prod_rules = {} t_basename = os.path.basename(tdfname) out_tdfname = os.path.basename(t_basename) + ".prs" if os.path.exists("ProdRules/" + out_tdfname): print "==> exists:", out_tdfname return out_tdfname if 0: print "ProdRules/" + out_tdfname, tdfname with open(tdfname, 'r') as f: # read tree decomp from inddgo lines = f.readlines() lines = [x.rstrip('\r\n') for x in lines] cbags = {} bags = [x.split() for x in lines if x.startswith('B')] for b in bags: cbags[int(b[1])] = [int(x) for x in b[3:]] # what to do with bag size? edges = [x.split()[1:] for x in lines if x.startswith('e')] edges = [[int(k) for k in x] for x in edges] tree = defaultdict(set) for s, t in edges: tree[frozenset(cbags[s])].add(frozenset(cbags[t])) if DEBUG: print '.. # of keys in `tree`:', len(tree.keys()) root = list(tree)[0] root = frozenset(cbags[1]) T = td.make_rooted(tree, root) # nfld.unfold_2wide_tuple(T) # lets me display the tree's frozen sets T = phrg.binarize(T) root = list(T)[0] root, children = T # td.new_visit(T, G, prod_rules, TD) # print ">>",len(T) td.new_visit(T, G, prod_rules) if 0: print "--------------------" if 0: print "- Production Rules -" if 0: print "--------------------" for k in prod_rules.iterkeys(): if DEBUG: print k s = 0 for d in prod_rules[k]: s += prod_rules[k][d] for d in prod_rules[k]: prod_rules[k][d] = float(prod_rules[k][d]) / float( s) # normailization step to create probs not counts. if DEBUG: print '\t -> ', d, prod_rules[k][d] rules = [] id = 0 for k, v in prod_rules.iteritems(): sid = 0 for x in prod_rules[k]: rhs = re.findall("[^()]+", x) rules.append( ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])) if 0: print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]) sid += 1 id += 1 # print rules if 0: print "--------------------" if 0: print '- P. Rules', len(rules) if 0: print "--------------------" ''' # ToDo. # Let's save these rules to file or print proper df = DataFrame(rules) print "out_tdfname:", out_tdfname df.to_csv("ProdRules/" + out_tdfname, sep="\t", header=False, index=False) ''' # g = pcfg.Grammar('S') # for (id, lhs, rhs, prob) in rules: # g.add_rule(pcfg.Rule(id, lhs, rhs, prob)) # Synthetic Graphs # hStars = grow_exact_size_hrg_graphs_from_prod_rules(rules, graph_name, G.number_of_nodes(), 20) # # metricx = ['degree', 'hops', 'clust', 'assort', 'kcore', 'gcd'] # 'eigen' # metricx = ['gcd','avgdeg'] # metrics.network_properties([G], metricx, hStars, name=graph_name, out_tsv=True) return ""