def run(p="../../../data/atis/atis.pkl", wordembdim=70, lablembdim=70, innerdim=300, lr=0.05, numbats=100, epochs=20, validinter=1, wreg=0.0003, depth=1): train, test, dics = pickle.load(open(p)) word2idx = dics["words2idx"] table2idx = dics["tables2idx"] label2idx = dics["labels2idx"] label2idxrev = {v: k for k, v in label2idx.items()} train = zip(*train) test = zip(*test) print "%d training examples, %d test examples" % (len(train), len(test)) #tup2text(train[0], word2idx, table2idx, label2idx) maxlen = 0 for tup in train + test: maxlen = max(len(tup[0]), maxlen) numwords = max(word2idx.values()) + 2 numlabels = max(label2idx.values()) + 2 # get training data traindata = getdatamatrix(train, maxlen, 0).astype("int32") traingold = getdatamatrix(train, maxlen, 2).astype("int32") trainmask = (traindata > 0).astype("float32") # test data testdata = getdatamatrix(test, maxlen, 0).astype("int32") testgold = getdatamatrix(test, maxlen, 2).astype("int32") testmask = (testdata > 0).astype("float32") res = atiseval(testgold - 1, testgold - 1, label2idxrev) print res #; exit() # define model innerdim = [innerdim] * depth m = SimpleSeqTransDec(indim=numwords, inpembdim=wordembdim, outembdim=lablembdim, innerdim=innerdim, outdim=numlabels) # training m = m.train([traindata, shiftdata(traingold), trainmask], traingold).adagrad(lr=lr).grad_total_norm(5.0).seq_cross_entropy().l2(wreg)\ .split_validate(splits=5, random=True).seq_cross_entropy().seq_accuracy().validinter(validinter).takebest()\ .train(numbats, epochs) # predict after training s = GreedySearch(m, startsymbol=0) testpred, _ = s.decode(testdata) testpred = testpred * testmask evalres = atiseval(testpred - 1, testgold - 1, label2idxrev) print evalres
def run(p="../../../data/atis/atis.pkl", wordembdim=70, lablembdim=70, innerdim=300, lr=0.05, numbats=100, epochs=20, validinter=1, wreg=0.0003, depth=1): train, test, dics = pickle.load(open(p)) word2idx = dics["words2idx"] table2idx = dics["tables2idx"] label2idx = dics["labels2idx"] label2idxrev = {v: k for k, v in label2idx.items()} train = zip(*train) test = zip(*test) print "%d training examples, %d test examples" % (len(train), len(test)) #tup2text(train[0], word2idx, table2idx, label2idx) maxlen = 0 for tup in train + test: maxlen = max(len(tup[0]), maxlen) numwords = max(word2idx.values()) + 2 numlabels = max(label2idx.values()) + 2 # get training data traindata = getdatamatrix(train, maxlen, 0).astype("int32") traingold = getdatamatrix(train, maxlen, 2).astype("int32") trainmask = (traindata > 0).astype("float32") # test data testdata = getdatamatrix(test, maxlen, 0).astype("int32") testgold = getdatamatrix(test, maxlen, 2).astype("int32") testmask = (testdata > 0).astype("float32") res = atiseval(testgold-1, testgold-1, label2idxrev); print res#; exit() # define model innerdim = [innerdim] * depth m = SimpleSeqTransDec(indim=numwords, inpembdim=wordembdim, outembdim=lablembdim, innerdim=innerdim, outdim=numlabels) # training m = m.train([traindata, shiftdata(traingold), trainmask], traingold).adagrad(lr=lr).grad_total_norm(5.0).seq_cross_entropy().l2(wreg)\ .split_validate(splits=5, random=True).seq_cross_entropy().seq_accuracy().validinter(validinter).takebest()\ .train(numbats, epochs) # predict after training s = SeqTransDecSearch(m) testpred, _ = s.decode(testdata) testpred = testpred * testmask evalres = atiseval(testpred-1, testgold-1, label2idxrev); print evalres
def test_output_shape(self): # settings batsize = 10 seqlen = 5 invocsize = 50 inembdim = 50 outembdim = 40 innerdim = 11 outvocsize = 17 # data traindata = np.random.randint(0, invocsize, (batsize, seqlen)) traingold = np.random.randint(0, outvocsize, (batsize, seqlen)) # model m = SimpleSeqTransDec(indim=invocsize, inpembdim=inembdim, outpembdim=outembdim, innerdim=innerdim, outdim=outvocsize) pred = m.predict(traindata, shiftdata(traingold)) self.assertEqual(pred.shape, (batsize, seqlen, outvocsize))
def test_output_shape(self): # settings batsize = 10 seqlen = 5 invocsize = 50 inembdim = 50 outembdim = 40 innerdim = 11 outvocsize = 17 # data traindata = np.random.randint(0, invocsize, (batsize, seqlen)) traingold = np.random.randint(0, outvocsize, (batsize, seqlen)) # model m = SimpleSeqTransDec( indim=invocsize, inpembdim=inembdim, outpembdim=outembdim, innerdim=innerdim, outdim=outvocsize ) pred = m.predict(traindata, shiftdata(traingold)) self.assertEqual(pred.shape, (batsize, seqlen, outvocsize))
def test_stop_symbol(self): m = SimpleSeqTransDec(indim=20, outdim=10, inpembdim=8, outembdim=9, innerdim=11) inpseq = np.random.randint(0, 20, (5, 7)).astype("int32") searcher = GreedySearch(m, startsymbol=0, stopsymbol=0) searcher.init(5) out = searcher.search(inpseq) self.assertTrue(np.all(out[0] == np.zeros_like(out[0])))
def test_recappl_shapes_model_user(self): batsize = 100 model = SimpleSeqTransDec(indim=200, outdim=50, inpembdim=20, outembdim=20, innerdim=[40, 30]) mu = RecPredictor(model).init(batsize) inpval2 = np.random.randint(0, 50, (batsize, )).astype("int32") for i in range(5): inpval = np.random.randint(0, 200, (batsize, )).astype("int32") outpval = mu.feed(inpval, inpval2) inpval2 = np.argmax(outpval, axis=1).astype("int32") self.assertEqual(outpval.shape, (batsize, 50))