示例#1
0
def split_ts(data, mmix, mask, acc):
    """
    Splits `data` time series into accepted component time series and remainder

    Parameters
    ----------
    data : (S x T) array_like
        Input data, where `S` is samples and `T` is time
    mmix : (T x C) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    mask : (S,) array_like
        Boolean mask array
    acc : :obj:`list`
        List of accepted components used to subset `mmix`

    Returns
    -------
    hikts : (S x T) :obj:`numpy.ndarray`
        Time series reconstructed using only components in `acc`
    rest : (S x T) :obj:`numpy.ndarray`
        Original data with `hikts` removed
    """

    cbetas = model.get_coeffs(data - data.mean(axis=-1, keepdims=True),
                              mmix, mask)
    betas = cbetas[mask]
    if len(acc) != 0:
        hikts = utils.unmask(betas[:, acc].dot(mmix.T[acc, :]), mask)
    else:
        hikts = None

    resid = data - hikts

    return hikts, resid
示例#2
0
文件: io.py 项目: TomMaullin/tedana
def split_ts(data, mmix, mask, acc):
    """
    Splits `data` time series into accepted component time series and remainder

    Parameters
    ----------
    data : (S x T) array_like
        Input data, where `S` is samples and `T` is time
    mmix : (T x C) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    mask : (S,) array_like
        Boolean mask array
    acc : list
        List of accepted components used to subset `mmix`

    Returns
    -------
    hikts : (S x T) :obj:`numpy.ndarray`
        Time series reconstructed using only components in `acc`
    rest : (S x T) :obj:`numpy.ndarray`
        Original data with `hikts` removed
    """

    cbetas = model.get_coeffs(data - data.mean(axis=-1, keepdims=True), mask, mmix)
    betas = cbetas[mask]
    if len(acc) != 0:
        hikts = utils.unmask(betas[:, acc].dot(mmix.T[acc, :]), mask)
    else:
        hikts = None

    return hikts, data - hikts
示例#3
0
文件: io.py 项目: TomMaullin/tedana
def write_split_ts(data, mmix, mask, acc, rej, midk, ref_img, suffix=''):
    """
    Splits `data` into denoised / noise / ignored time series and saves to disk

    Parameters
    ----------
    data : (S x T) array_like
        Input time series
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    mask : (S,) array_like
        Boolean mask array
    acc : list
        Indices of accepted (BOLD) components in `mmix`
    rej : list
        Indices of rejected (non-BOLD) components in `mmix`
    midk : list
        Indices of mid-K (questionable) components in `mmix`
    ref_img : str or img_like
        Reference image to dictate how outputs are saved to disk
    suffix : str, optional
        Appended to name of saved files (before extension). Default: ''

    Returns
    -------
    varexpl : float
        Percent variance of data explained by extracted + retained components
    """

    # mask and de-mean data
    mdata = data[mask]
    dmdata = mdata.T - mdata.T.mean(axis=0)

    # get variance explained by retained components
    betas = model.get_coeffs(utils.unmask(dmdata.T, mask), mask, mmix)[mask]
    varexpl = (1 - ((dmdata.T - betas.dot(mmix.T))**2.).sum() / (dmdata**2.).sum()) * 100
    LGR.info('Variance explained by ICA decomposition: {:.02f}%'.format(varexpl))

    # create component and de-noised time series and save to files
    hikts = betas[:, acc].dot(mmix.T[acc, :])
    midkts = betas[:, midk].dot(mmix.T[midk, :])
    lowkts = betas[:, rej].dot(mmix.T[rej, :])
    dnts = data[mask] - lowkts - midkts

    if len(acc) != 0:
        fout = utils.filewrite(utils.unmask(hikts, mask), 'hik_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing high-Kappa time series: {}'.format(op.abspath(fout)))
    if len(midk) != 0:
        fout = utils.filewrite(utils.unmask(midkts, mask), 'midk_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing mid-Kappa time series: {}'.format(op.abspath(fout)))
    if len(rej) != 0:
        fout = utils.filewrite(utils.unmask(lowkts, mask), 'lowk_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing low-Kappa time series: {}'.format(op.abspath(fout)))

    fout = utils.filewrite(utils.unmask(dnts, mask), 'dn_ts_{0}'.format(suffix), ref_img)
    LGR.info('Writing denoised time series: {}'.format(op.abspath(fout)))

    return varexpl
示例#4
0
文件: io.py 项目: TomMaullin/tedana
def writeresults(ts, mask, comptable, mmix, n_vols, acc, rej, midk, empty, ref_img):
    """
    Denoises `ts` and saves all resulting files to disk

    Parameters
    ----------
    ts : (S x T) array_like
        Time series to denoise and save to disk
    mask : (S,) array_like
        Boolean mask array
    comptable : (N x 5) array_like
        Array with columns denoting (1) index of component, (2) Kappa score of
        component, (3) Rho score of component, (4) variance explained by
        component, and (5) normalized variance explained by component
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    acc : list
        Indices of accepted (BOLD) components in `mmix`
    rej : list
        Indices of rejected (non-BOLD) components in `mmix`
    midk : list
        Indices of mid-K (questionable) components in `mmix`
    empty : list
        Indices of ignored components in `mmix`
    ref_img : str or img_like
        Reference image to dictate how outputs are saved to disk
    """

    fout = utils.filewrite(ts, 'ts_OC', ref_img)
    LGR.info('Writing optimally-combined time series: {}'.format(op.abspath(fout)))

    varexpl = write_split_ts(ts, mmix, mask, acc, rej, midk, ref_img, suffix='OC')

    ts_B = model.get_coeffs(ts, mask, mmix)
    fout = utils.filewrite(ts_B, 'betas_OC', ref_img)
    LGR.info('Writing full ICA coefficient feature set: {}'.format(op.abspath(fout)))

    if len(acc) != 0:
        fout = utils.filewrite(ts_B[:, acc], 'betas_hik_OC', ref_img)
        LGR.info('Writing denoised ICA coefficient feature set: {}'.format(op.abspath(fout)))
        fout = writefeats(split_ts(ts, mmix, mask, acc)[0],
                          mmix[:, acc], mask, ref_img, suffix='OC2')
        LGR.info('Writing Z-normalized spatial component maps: {}'.format(op.abspath(fout)))

    writect(comptable, n_vols, acc, rej, midk, empty, ctname='comp_table.txt',
            varexpl=varexpl)
    LGR.info('Writing component table: {}'.format(op.abspath('comp_table.txt')))
示例#5
0
def split_ts(data, mmix, mask, comptable):
    """
    Splits `data` time series into accepted component time series and remainder

    Parameters
    ----------
    data : (S x T) array_like
        Input data, where `S` is samples and `T` is time
    mmix : (T x C) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    mask : (S,) array_like
        Boolean mask array
    comptable : (C x X) :obj:`pandas.DataFrame`
        Component metric table. One row for each component, with a column for
        each metric. Requires at least two columns: "component" and
        "classification".

    Returns
    -------
    hikts : (S x T) :obj:`numpy.ndarray`
        Time series reconstructed using only components in `acc`
    rest : (S x T) :obj:`numpy.ndarray`
        Original data with `hikts` removed
    """
    acc = comptable[comptable.classification == 'accepted'].index.values

    cbetas = model.get_coeffs(data - data.mean(axis=-1, keepdims=True),
                              mmix, mask)
    betas = cbetas[mask]
    if len(acc) != 0:
        hikts = utils.unmask(betas[:, acc].dot(mmix.T[acc, :]), mask)
    else:
        hikts = None

    resid = data - hikts

    return hikts, resid
示例#6
0
def writeresults(ts, mask, comptable, mmix, n_vols, fixed_seed,
                 acc, rej, midk, empty, ref_img):
    """
    Denoises `ts` and saves all resulting files to disk

    Parameters
    ----------
    ts : (S x T) array_like
        Time series to denoise and save to disk
    mask : (S,) array_like
        Boolean mask array
    comptable : (N x 5) array_like
        Array with columns denoting (1) index of component, (2) Kappa score of
        component, (3) Rho score of component, (4) variance explained by
        component, and (5) normalized variance explained by component
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    n_vols : :obj:`int`
        Number of volumes in original time series
    fixed_seed: :obj:`int`
        Integer value used in seeding ICA
    acc : :obj:`list`
        Indices of accepted (BOLD) components in `mmix`
    rej : :obj:`list`
        Indices of rejected (non-BOLD) components in `mmix`
    midk : :obj:`list`
        Indices of mid-K (questionable) components in `mmix`
    empty : :obj:`list`
        Indices of ignored components in `mmix`
    ref_img : :obj:`str` or img_like
        Reference image to dictate how outputs are saved to disk

    Notes
    -----
    This function writes out several files:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    ts_OC.nii                 Optimally combined 4D time series.
    hik_ts_OC.nii             High-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    midk_ts_OC.nii            Mid-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    low_ts_OC.nii             Low-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    dn_ts_OC.nii              Denoised time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    betas_OC.nii              Full ICA coefficient feature set.
    betas_hik_OC.nii          Denoised ICA coefficient feature set.
    feats_OC2.nii             Z-normalized spatial component maps. Generated
                              by :py:func:`tedana.utils.io.writefeats`.
    comp_table.txt            Component table. Generated by
                              :py:func:`tedana.utils.io.writect`.
    ======================    =================================================
    """

    fout = filewrite(ts, 'ts_OC', ref_img)
    LGR.info('Writing optimally-combined time series: {}'.format(op.abspath(fout)))

    write_split_ts(ts, mmix, mask, acc, rej, midk, ref_img, suffix='OC')

    ts_B = model.get_coeffs(ts, mmix, mask)
    fout = filewrite(ts_B, 'betas_OC', ref_img)
    LGR.info('Writing full ICA coefficient feature set: {}'.format(op.abspath(fout)))

    if len(acc) != 0:
        fout = filewrite(ts_B[:, acc], 'betas_hik_OC', ref_img)
        LGR.info('Writing denoised ICA coefficient feature set: {}'.format(op.abspath(fout)))
        fout = writefeats(split_ts(ts, mmix, mask, acc)[0],
                          mmix[:, acc], mask, ref_img, suffix='OC2')
        LGR.info('Writing Z-normalized spatial component maps: {}'.format(op.abspath(fout)))
示例#7
0
def write_split_ts(data, mmix, mask, acc, rej, midk, ref_img, suffix=''):
    """
    Splits `data` into denoised / noise / ignored time series and saves to disk

    Parameters
    ----------
    data : (S x T) array_like
        Input time series
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    mask : (S,) array_like
        Boolean mask array
    acc : :obj:`list`
        Indices of accepted (BOLD) components in `mmix`
    rej : :obj:`list`
        Indices of rejected (non-BOLD) components in `mmix`
    midk : :obj:`list`
        Indices of mid-K (questionable) components in `mmix`
    ref_img : :obj:`str` or img_like
        Reference image to dictate how outputs are saved to disk
    suffix : :obj:`str`, optional
        Appended to name of saved files (before extension). Default: ''

    Returns
    -------
    varexpl : :obj:`float`
        Percent variance of data explained by extracted + retained components

    Notes
    -----
    This function writes out several files:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    hik_ts_[suffix].nii       High-Kappa time series.
    midk_ts_[suffix].nii      Mid-Kappa time series.
    low_ts_[suffix].nii       Low-Kappa time series.
    dn_ts_[suffix].nii        Denoised time series.
    ======================    =================================================
    """

    # mask and de-mean data
    mdata = data[mask]
    dmdata = mdata.T - mdata.T.mean(axis=0)

    # get variance explained by retained components
    betas = model.get_coeffs(dmdata.T, mmix, mask=None)
    varexpl = (1 - ((dmdata.T - betas.dot(mmix.T))**2.).sum() /
               (dmdata**2.).sum()) * 100
    LGR.info('Variance explained by ICA decomposition: '
             '{:.02f}%'.format(varexpl))

    # create component and de-noised time series and save to files
    hikts = betas[:, acc].dot(mmix.T[acc, :])
    midkts = betas[:, midk].dot(mmix.T[midk, :])
    lowkts = betas[:, rej].dot(mmix.T[rej, :])
    dnts = data[mask] - lowkts - midkts

    if len(acc) != 0:
        fout = filewrite(utils.unmask(hikts, mask),
                         'hik_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing high-Kappa time series: {}'.format(op.abspath(fout)))

    if len(midk) != 0:
        fout = filewrite(utils.unmask(midkts, mask),
                         'midk_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing mid-Kappa time series: {}'.format(op.abspath(fout)))

    if len(rej) != 0:
        fout = filewrite(utils.unmask(lowkts, mask),
                         'lowk_ts_{0}'.format(suffix), ref_img)
        LGR.info('Writing low-Kappa time series: {}'.format(op.abspath(fout)))

    fout = filewrite(utils.unmask(dnts, mask),
                     'dn_ts_{0}'.format(suffix), ref_img)
    LGR.info('Writing denoised time series: {}'.format(op.abspath(fout)))

    return varexpl
示例#8
0
文件: io.py 项目: fast-prakhar/tedana
def writeresults(ts, mask, comptable, mmix, n_vols, acc, rej, midk, empty,
                 ref_img):
    """
    Denoises `ts` and saves all resulting files to disk

    Parameters
    ----------
    ts : (S x T) array_like
        Time series to denoise and save to disk
    mask : (S,) array_like
        Boolean mask array
    comptable : (N x 5) array_like
        Array with columns denoting (1) index of component, (2) Kappa score of
        component, (3) Rho score of component, (4) variance explained by
        component, and (5) normalized variance explained by component
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    acc : list
        Indices of accepted (BOLD) components in `mmix`
    rej : list
        Indices of rejected (non-BOLD) components in `mmix`
    midk : list
        Indices of mid-K (questionable) components in `mmix`
    empty : list
        Indices of ignored components in `mmix`
    ref_img : str or img_like
        Reference image to dictate how outputs are saved to disk
    """

    fout = utils.filewrite(ts, 'ts_OC', ref_img)
    LGR.info('Writing optimally-combined time series: {}'.format(
        op.abspath(fout)))

    varexpl = write_split_ts(ts,
                             mmix,
                             mask,
                             acc,
                             rej,
                             midk,
                             ref_img,
                             suffix='OC')

    ts_B = model.get_coeffs(ts, mask, mmix)
    fout = utils.filewrite(ts_B, 'betas_OC', ref_img)
    LGR.info('Writing full ICA coefficient feature set: {}'.format(
        op.abspath(fout)))

    if len(acc) != 0:
        fout = utils.filewrite(ts_B[:, acc], 'betas_hik_OC', ref_img)
        LGR.info('Writing denoised ICA coefficient feature set: {}'.format(
            op.abspath(fout)))
        fout = writefeats(split_ts(ts, mmix, mask, acc)[0],
                          mmix[:, acc],
                          mask,
                          ref_img,
                          suffix='OC2')
        LGR.info('Writing Z-normalized spatial component maps: {}'.format(
            op.abspath(fout)))

    writect(comptable,
            n_vols,
            acc,
            rej,
            midk,
            empty,
            ctname='comp_table.txt',
            varexpl=varexpl)
    LGR.info('Writing component table: {}'.format(
        op.abspath('comp_table.txt')))
示例#9
0
def write_comp_figs(ts, mask, comptable, mmix, ref_img, out_dir, png_cmap):
    """
    Creates static figures that highlight certain aspects of tedana processing
    This includes a figure for each component showing the component time course,
    the spatial weight map and a fast Fourier transform of the time course

    Parameters
    ----------
    ts : (S x T) array_like
        Time series from which to derive ICA betas
    mask : (S,) array_like
        Boolean mask array
    comptable : (C x X) :obj:`pandas.DataFrame`
        Component metric table. One row for each component, with a column for
        each metric. The index should be the component number.
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    ref_img : :obj:`str` or img_like
        Reference image to dictate how outputs are saved to disk
    out_dir : :obj:`str`
        Figures folder within output directory
    png_cmap : :obj:`str`
        The name of a matplotlib colormap to use when making figures. Optional.
        Default colormap is 'coolwarm'

    """
    # Get the lenght of the timeseries
    n_vols = len(mmix)

    # Check that colormap provided exists
    if png_cmap not in plt.colormaps():
        LGR.warning(
            'Provided colormap is not recognized, proceeding with default')
        png_cmap = 'coolwarm'
    # regenerate the beta images
    ts_B = model.get_coeffs(ts, mmix, mask)
    ts_B = ts_B.reshape(ref_img.shape[:3] + ts_B.shape[1:])
    # trim edges from ts_B array
    ts_B = trim_edge_zeros(ts_B)

    # Mask out remaining zeros
    ts_B = np.ma.masked_where(ts_B == 0, ts_B)

    # Get repetition time from ref_img
    tr = ref_img.header.get_zooms()[-1]

    # Create indices for 6 cuts, based on dimensions
    cuts = [ts_B.shape[dim] // 6 for dim in range(3)]
    expl_text = ''

    # Remove trailing ';' from rationale column
    comptable['rationale'] = comptable['rationale'].str.rstrip(';')
    for compnum in comptable.index.values:
        if comptable.loc[compnum, "classification"] == 'accepted':
            line_color = 'g'
            expl_text = 'accepted'
        elif comptable.loc[compnum, "classification"] == 'rejected':
            line_color = 'r'
            expl_text = 'rejection reason(s): ' + comptable.loc[compnum,
                                                                "rationale"]
        elif comptable.loc[compnum, "classification"] == 'ignored':
            line_color = 'k'
            expl_text = 'ignored reason(s): ' + comptable.loc[compnum,
                                                              "rationale"]
        else:
            # Classification not added
            # If new, this will keep code running
            line_color = '0.75'
            expl_text = 'other classification'

        allplot = plt.figure(figsize=(10, 9))
        ax_ts = plt.subplot2grid((5, 6), (0, 0),
                                 rowspan=1,
                                 colspan=6,
                                 fig=allplot)

        ax_ts.set_xlabel('TRs')
        ax_ts.set_xlim(0, n_vols)
        plt.yticks([])
        # Make a second axis with units of time (s)
        max_xticks = 10
        xloc = plt.MaxNLocator(max_xticks)
        ax_ts.xaxis.set_major_locator(xloc)

        ax_ts2 = ax_ts.twiny()
        ax1Xs = ax_ts.get_xticks()

        ax2Xs = []
        for X in ax1Xs:
            # Limit to 2 decimal places
            seconds_val = round(X * tr, 2)
            ax2Xs.append(seconds_val)
        ax_ts2.set_xticks(ax1Xs)
        ax_ts2.set_xlim(ax_ts.get_xbound())
        ax_ts2.set_xticklabels(ax2Xs)
        ax_ts2.set_xlabel('seconds')

        ax_ts.plot(mmix[:, compnum], color=line_color)

        # Title will include variance from comptable
        comp_var = "{0:.2f}".format(comptable.loc[compnum,
                                                  "variance explained"])
        comp_kappa = "{0:.2f}".format(comptable.loc[compnum, "kappa"])
        comp_rho = "{0:.2f}".format(comptable.loc[compnum, "rho"])
        plt_title = ('Comp. {}: variance: {}%, kappa: {}, rho: {}, '
                     '{}'.format(compnum, comp_var, comp_kappa, comp_rho,
                                 expl_text))
        title = ax_ts.set_title(plt_title)
        title.set_y(1.5)

        # Set range to ~1/10th of max positive or negative beta
        imgmax = 0.1 * np.abs(ts_B[:, :, :, compnum]).max()
        imgmin = imgmax * -1

        for idx, cut in enumerate(cuts):
            for imgslice in range(1, 6):
                ax = plt.subplot2grid((5, 6), (idx + 1, imgslice - 1),
                                      rowspan=1,
                                      colspan=1)
                ax.axis('off')

                if idx == 0:
                    to_plot = np.rot90(ts_B[imgslice * cuts[idx], :, :,
                                            compnum])
                if idx == 1:
                    to_plot = np.rot90(ts_B[:, imgslice * cuts[idx], :,
                                            compnum])
                if idx == 2:
                    to_plot = ts_B[:, :, imgslice * cuts[idx], compnum]

                ax_im = ax.imshow(to_plot,
                                  vmin=imgmin,
                                  vmax=imgmax,
                                  aspect='equal',
                                  cmap=png_cmap)

        # Add a color bar to the plot.
        ax_cbar = allplot.add_axes([0.8, 0.3, 0.03, 0.37])
        cbar = allplot.colorbar(ax_im, ax_cbar)
        cbar.set_label('Component Beta', rotation=90)
        cbar.ax.yaxis.set_label_position('left')

        # Get fft and freqs for this subject
        # adapted from @dangom
        spectrum, freqs = get_spectrum(mmix[:, compnum], tr)

        # Plot it
        ax_fft = plt.subplot2grid((5, 6), (4, 0), rowspan=1, colspan=6)
        ax_fft.plot(freqs, spectrum)
        ax_fft.set_title('One Sided fft')
        ax_fft.set_xlabel('Hz')
        ax_fft.set_xlim(freqs[0], freqs[-1])
        plt.yticks([])

        # Fix spacing so TR label does overlap with other plots
        allplot.subplots_adjust(hspace=0.4)
        plot_name = 'comp_{}.png'.format(str(compnum).zfill(3))
        compplot_name = os.path.join(out_dir, plot_name)
        plt.savefig(compplot_name)
        plt.close()
示例#10
0
def writeresults(ts, mask, comptable, mmix, n_vols, ref_img):
    """
    Denoises `ts` and saves all resulting files to disk

    Parameters
    ----------
    ts : (S x T) array_like
        Time series to denoise and save to disk
    mask : (S,) array_like
        Boolean mask array
    comptable : (C x X) :obj:`pandas.DataFrame`
        Component metric table. One row for each component, with a column for
        each metric. Requires at least two columns: "component" and
        "classification".
    mmix : (C x T) array_like
        Mixing matrix for converting input data to component space, where `C`
        is components and `T` is the same as in `data`
    n_vols : :obj:`int`
        Number of volumes in original time series
    ref_img : :obj:`str` or img_like
        Reference image to dictate how outputs are saved to disk

    Notes
    -----
    This function writes out several files:

    ======================    =================================================
    Filename                  Content
    ======================    =================================================
    ts_OC.nii                 Optimally combined 4D time series.
    hik_ts_OC.nii             High-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    midk_ts_OC.nii            Mid-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    low_ts_OC.nii             Low-Kappa time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    dn_ts_OC.nii              Denoised time series. Generated by
                              :py:func:`tedana.utils.io.write_split_ts`.
    betas_OC.nii              Full ICA coefficient feature set.
    betas_hik_OC.nii          Denoised ICA coefficient feature set.
    feats_OC2.nii             Z-normalized spatial component maps. Generated
                              by :py:func:`tedana.utils.io.writefeats`.
    comp_table.txt            Component table. Generated by
                              :py:func:`tedana.utils.io.writect`.
    ======================    =================================================
    """
    acc = comptable[comptable.classification == 'accepted'].index.values

    fout = filewrite(ts, 'ts_OC', ref_img)
    LGR.info('Writing optimally-combined time series: {}'.format(op.abspath(fout)))

    write_split_ts(ts, mmix, mask, comptable, ref_img, suffix='OC')

    ts_B = model.get_coeffs(ts, mmix, mask)
    fout = filewrite(ts_B, 'betas_OC', ref_img)
    LGR.info('Writing full ICA coefficient feature set: {}'.format(op.abspath(fout)))

    if len(acc) != 0:
        fout = filewrite(ts_B[:, acc], 'betas_hik_OC', ref_img)
        LGR.info('Writing denoised ICA coefficient feature set: {}'.format(op.abspath(fout)))
        fout = writefeats(split_ts(ts, mmix, mask, comptable)[0],
                          mmix[:, acc], mask, ref_img, suffix='OC2')
        LGR.info('Writing Z-normalized spatial component maps: {}'.format(op.abspath(fout)))