示例#1
0
def ebgp_net():
    graph = NetworkGraph()
    r1, r2 = 'R1', 'R2'
    graph.add_router(r1)
    graph.add_router(r2)
    graph.add_router_edge(r1, r2)
    graph.add_router_edge(r2, r1)

    # BGP configs
    graph.set_bgp_asnum(r1, 100)
    graph.set_bgp_asnum(r2, 200)
    graph.add_bgp_neighbor(r1, r2)

    # Some internal to be announced network
    net = ip_network(u'128.0.0.0/24')
    prefix = '128_0_0_0'
    lo0 = 'lo10'
    prefix_map = {prefix: net}
    loaddr = ip_interface("%s/%d" % (net.hosts().next(), net.prefixlen))
    graph.set_loopback_addr(r1, lo0, loaddr)
    graph.add_bgp_announces(r1, lo0)

    # Synthesize all the interfaces and link configurations
    connecte_syn = ConnectedSyn(graph, full=True)
    assert connecte_syn.synthesize()

    graph.set_iface_names()

    gns3 = GNS3Topo(graph=graph, prefix_map=prefix_map)
    gns3.write_configs('out-configs/ebgp-simple')
示例#2
0
def get_ebgp_linear_topo(N=2):
    """Return N routers configured in a linear topology"""
    net = NetworkGraph()
    for i in range(1, N + 1):
        name = "R%d" % i
        net.add_router(name)
        net.set_bgp_asnum(name, i * 100)
    for i in range(1, N):
        r1 = "R%d" % i
        r2 = "R%d" % (i + 1)
        net.add_router_edge(r1, r2)
        net.add_router_edge(r2, r1)
        net.add_bgp_neighbor(r1,
                             r2,
                             router_a_iface=VALUENOTSET,
                             router_b_iface=VALUENOTSET)
    return net
示例#3
0
def gen_mesh(mesh_size, asnum=None):
    """Generate a full mesh topology"""
    g_phy = NetworkGraph()
    for num in range(mesh_size):
        node = 'R%d' % (num + 1)
        g_phy.add_router(node)
        if asnum:
            g_phy.set_bgp_asnum(node, asnum)

    for src in g_phy.nodes():
        for dst in g_phy.nodes():
            if src == dst:
                continue
            g_phy.add_router_edge(src, dst)
            if asnum:
                if dst not in g_phy.get_bgp_neighbors(src):
                    g_phy.add_bgp_neighbor(router_a=src,
                                           router_b=dst,
                                           router_a_iface=VALUENOTSET,
                                           router_b_iface=VALUENOTSET)
    return g_phy
示例#4
0
def two_ebgp_nodes(export_path):
    """
    Two routers connected via eBGP
    Very simple once router announces a single prefix and the other selects it
    """
    graph = NetworkGraph()
    r1, r2 = 'R1', 'R2'
    graph.add_router(r1)
    graph.add_router(r2)
    graph.add_router_edge(r1, r2)
    graph.add_router_edge(r2, r1)

    # BGP configs
    graph.set_bgp_asnum(r1, 100)
    graph.set_bgp_asnum(r2, 200)
    # Establish peering
    # The actual network interfaces used for peering will be synthesized
    graph.add_bgp_neighbor(r1,
                           r2,
                           router_a_iface=VALUENOTSET,
                           router_b_iface=VALUENOTSET)

    # Some internal network
    net = ip_network(u'128.0.0.0/24')
    prefix = '128_0_0_0'
    prefix_map = {prefix: net}
    lo0 = 'lo0'
    graph.set_loopback_addr(
        r1, lo0, ip_interface("%s/%d" % (net.hosts().next(), net.prefixlen)))
    # Announce the internal network
    graph.add_bgp_announces(r1, lo0)

    # The communities recognized by us
    comms = [Community("100:10"), Community("100:20")]

    # The announcement that will be propagated by R1
    ann = Announcement(prefix=prefix,
                       peer=r1,
                       origin=BGP_ATTRS_ORIGIN.EBGP,
                       next_hop='R1Hop',
                       as_path=[100],
                       as_path_len=1,
                       local_pref=100,
                       med=100,
                       communities=dict([(c, False) for c in comms]),
                       permitted=True)

    path = PathReq(Protocols.BGP, prefix, ['R2', 'R1'], False)
    reqs = [path]

    # Get SMT Context
    ctx = create_context(reqs, graph, [ann])

    propagation = EBGPPropagation(reqs, graph, ctx)

    propagation.compute_dags()
    propagation.synthesize()

    # Synthesize all the interfaces and link configurations
    connecte_syn = ConnectedSyn([], graph, full=True)
    connecte_syn.synthesize()

    # SMT Solving
    solver = z3.Solver(ctx=ctx.z3_ctx)
    assert ctx.check(solver) == z3.sat, solver.unsat_core()

    # Update graph with the concrete values after solver
    propagation.update_network_graph()
    gns3 = GNS3Topo(graph=graph, prefix_map=prefix_map)
    gns3.write_configs('%s/ibgp-simple' % export_path)
示例#5
0
def test_double_import():
    """Unit test of Route maps"""
    graph = NetworkGraph()
    r1, r2 = 'R1', 'R2'
    graph.add_router(r1)
    graph.add_router(r2)
    graph.add_router_edge(r1, r2)
    graph.add_router_edge(r2, r1)

    # BGP configs
    graph.set_bgp_asnum(r1, 100)
    graph.set_bgp_asnum(r2, 200)
    # Establish peering
    # The actual network interfaces used for peering will be synthesized
    graph.add_bgp_neighbor(r1,
                           r2,
                           router_a_iface=VALUENOTSET,
                           router_b_iface=VALUENOTSET)

    # Some internal network
    net = ip_network(u'128.0.0.0/24')
    prefix = '128_0_0_0'
    prefix_map = {prefix: net}
    lo0 = 'lo0'
    graph.set_loopback_addr(
        r1, lo0, ip_interface("%s/%d" % (net.hosts().next(), net.prefixlen)))
    # Announce the internal network
    graph.add_bgp_announces(r1, lo0)

    # The communities recognized by us
    comms = [Community("100:10"), Community("100:20")]

    # The announcement that will be propagated by R1
    ann = Announcement(prefix=prefix,
                       peer=r1,
                       origin=BGP_ATTRS_ORIGIN.EBGP,
                       next_hop='R1Hop',
                       as_path=[100],
                       as_path_len=1,
                       local_pref=100,
                       med=100,
                       communities=dict([(c, False) for c in comms]),
                       permitted=True)

    path = PathReq(Protocols.BGP, prefix, ['R2', 'R1'], False)
    reqs = [path]

    ctx = create_context(reqs, graph, [ann], create_as_paths=True)

    from synet.utils.fnfree_policy import SMTRouteMap
    rline1 = RouteMapLine(matches=None,
                          actions=None,
                          access=VALUENOTSET,
                          lineno=10)
    deny_line1 = RouteMapLine(matches=None,
                              actions=None,
                              access=Access.deny,
                              lineno=100)
    rmap1 = RouteMap(name='Rmap1', lines=[rline1, deny_line1])
    rline2 = RouteMapLine(matches=None,
                          actions=None,
                          access=VALUENOTSET,
                          lineno=10)
    deny_line2 = RouteMapLine(matches=None,
                              actions=None,
                              access=Access.deny,
                              lineno=100)
    rmap2 = RouteMap(name='Rmap1', lines=[rline2, deny_line2])
    sym = get_sym([ann], ctx)

    smt1 = SMTRouteMap(rmap1, sym, ctx)
    smt2 = SMTRouteMap(rmap2, smt1.announcements, ctx)
    print "Original permitted", sym.announcements[0].permitted
    print "SMT 1 permitted", smt1.announcements[0].permitted
    print "SMT 2 permitted", smt2.announcements[0].permitted
    ctx.register_constraint(smt1.announcements[0].permitted.var == True)
    ctx.register_constraint(smt2.announcements[0].permitted.var == False)
    solver = z3.Solver(ctx=ctx.z3_ctx)
    ret = ctx.check(solver)
    #print solver.to_smt2()
    assert ret == z3.sat, solver.unsat_core()
    #print solver.model()
    print "Original permitted", sym.announcements[0].permitted
    print "SMT 1 permitted", smt1.announcements[0].permitted
    print "SMT 2 permitted", smt2.announcements[0].permitted
示例#6
0
def two_ebgp_nodes_route_map(export_path):
    """
    Two routers connected via eBGP with route maps
    Very simple one router announces a single prefix and the other selects it
    """
    graph = NetworkGraph()
    r1, r2 = 'R1', 'R2'
    graph.add_router(r1)
    graph.add_router(r2)
    graph.add_router_edge(r1, r2)
    graph.add_router_edge(r2, r1)

    # BGP configs
    graph.set_bgp_asnum(r1, 100)
    graph.set_bgp_asnum(r2, 200)
    # Establish peering
    # The actual network interfaces used for peering will be synthesized
    graph.add_bgp_neighbor(r1,
                           r2,
                           router_a_iface=VALUENOTSET,
                           router_b_iface=VALUENOTSET)

    # Some internal network
    net = ip_network(u'128.0.0.0/24')
    prefix = '128_0_0_0'
    prefix_map = {prefix: net}
    lo0 = 'lo0'
    graph.set_loopback_addr(
        r1, lo0, ip_interface("%s/%d" % (net.hosts().next(), net.prefixlen)))
    # Announce the internal network
    graph.add_bgp_announces(r1, lo0)

    # The communities recognized by us
    comms = [Community("100:10"), Community("100:20")]

    # The announcement that will be propagated by R1
    ann = Announcement(prefix=prefix,
                       peer=r1,
                       origin=BGP_ATTRS_ORIGIN.EBGP,
                       next_hop='R1Hop',
                       as_path=[100],
                       as_path_len=1,
                       local_pref=100,
                       med=100,
                       communities=dict([(c, False) for c in comms]),
                       permitted=True)

    path = PathReq(Protocols.BGP, prefix, ['R2', 'R1'], False)
    reqs = [path]

    # Create a route map to export from R1 to R2
    iplist = IpPrefixList(name='IpList1',
                          access=Access.permit,
                          networks=[prefix])
    graph.add_ip_prefix_list(r1, iplist)
    ip_match = MatchIpPrefixListList(iplist)
    set_community = ActionSetCommunity([comms[0]])
    rline = RouteMapLine(matches=[ip_match],
                         actions=[set_community],
                         access=Access.permit,
                         lineno=10)
    export_map = RouteMap(name="Export_R1_to_R2", lines=[rline])
    # Register the route map
    graph.add_route_map(r1, export_map)
    # Set the route map as an export route map
    graph.add_bgp_export_route_map(r1, r2, export_map.name)

    # Create a route map to import at R2 to from R1
    comm_list = CommunityList(list_id=1,
                              access=Access.permit,
                              communities=[comms[0]])
    graph.add_bgp_community_list(r2, comm_list)
    comm_match = MatchCommunitiesList(comm_list)
    set_local_pref = ActionSetLocalPref(200)
    rline = RouteMapLine(matches=[MatchNextHop(VALUENOTSET)],
                         actions=[set_local_pref],
                         access=Access.permit,
                         lineno=10)
    import_map = RouteMap(name="Import_R2_from_R1", lines=[rline])
    # Register the route map
    graph.add_route_map(r2, import_map)
    # Set the route map as an import route map
    graph.add_bgp_import_route_map(r2, r1, import_map.name)

    # Get SMT Context
    ctx = create_context(reqs, graph, [ann])
    propagation = EBGPPropagation(reqs, graph, ctx)
    propagation.compute_dags()
    propagation.synthesize()

    # Synthesize all the interfaces and link configurations
    connecte_syn = ConnectedSyn([], graph, full=True)
    connecte_syn.synthesize()

    # SMT Solving
    solver = z3.Solver(ctx=ctx.z3_ctx)
    assert ctx.check(solver) == z3.sat, solver.unsat_core()

    # Update graph with the concrete values after solver
    propagation.update_network_graph()
    gns3 = GNS3Topo(graph=graph, prefix_map=prefix_map)
    gns3.write_configs('%s/ebgp-route-map' % export_path)
    graph.write_graphml('%s/ebgp-route-map/topology.graphml' % export_path)
示例#7
0
def get_griffin_ibgp_graph():
    """
    Returns the eBGP topology Griffin's, however
    R2 is now a mesh of iBGP routers R2_0, R2_1, R2_2, R2_3
    and R5 is now a mesh of iBGP routers R5_0, R5_1, R5_2, R5_3
    :return: NetworkGraph
    """
    net = NetworkGraph()
    for i in range(1, 6):
        if i in [2, 5]:
            continue
        name = "R%d" % i
        net.add_router(name)
        net.set_bgp_asnum(name, i * 100)

    for i in range(4):
        r2 = 'R2_%d' % i
        r5 = 'R5_%d' % i
        net.add_router(r2)
        net.set_bgp_asnum(r2, 200)
        net.add_router(r5)
        net.set_bgp_asnum(r5, 500)

    # Connect R2, R5 ibgp routers
    for i in range(4):
        for j in range(4):
            if i == j:
                continue
            net.add_router_edge('R2_%d' % i, 'R2_%d' % j)
            if set([i, j]) not in [set([0, 3]), set([1, 2])]:
                net.add_router_edge('R5_%d' % i, 'R5_%d' % j)
            if 'R2_%d' % i in net.get_bgp_neighbors('R2_%d' % j):
                continue
            net.add_bgp_neighbor('R2_%d' % i,
                                 'R2_%d' % j,
                                 router_a_iface=VALUENOTSET,
                                 router_b_iface=VALUENOTSET)
            net.add_bgp_neighbor('R5_%d' % i,
                                 'R5_%d' % j,
                                 router_a_iface=VALUENOTSET,
                                 router_b_iface=VALUENOTSET)

    net.add_router_edge('R1', 'R2_2')
    net.add_router_edge('R2_2', 'R1')
    net.add_router_edge('R1', 'R2_3')
    net.add_router_edge('R2_3', 'R1')

    net.add_router_edge('R1', 'R3')
    net.add_router_edge('R3', 'R1')

    net.add_router_edge('R1', 'R4')
    net.add_router_edge('R4', 'R1')

    net.add_router_edge('R2_1', 'R3')
    net.add_router_edge('R3', 'R2_1')
    net.add_router_edge('R2_3', 'R3')
    net.add_router_edge('R3', 'R2_3')

    net.add_router_edge('R2_0', 'R4')
    net.add_router_edge('R4', 'R2_0')

    net.add_router_edge('R3', 'R5_1')
    net.add_router_edge('R5_1', 'R3')

    net.add_router_edge('R4', 'R5_0')
    net.add_router_edge('R5_0', 'R4')

    net.add_bgp_neighbor('R1',
                         'R2_2',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R1',
                         'R2_3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R1',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R1',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R2_1',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R2_3',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R2_0',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R5_1',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R5_0',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.set_iface_names()
    return net
示例#8
0
def get_griffin_graph():
    """
    Return the eBGP topology used in Griffin's papaers
    :return: NetworkGraph
    """
    net = NetworkGraph()
    for i in range(1, 6):
        name = "R%d" % i
        net.add_router(name)
        net.set_bgp_asnum(name, i * 100)

    net.add_router_edge('R1', 'R2')
    net.add_router_edge('R2', 'R1')

    net.add_router_edge('R1', 'R3')
    net.add_router_edge('R3', 'R1')

    net.add_router_edge('R1', 'R4')
    net.add_router_edge('R4', 'R1')

    net.add_router_edge('R2', 'R3')
    net.add_router_edge('R3', 'R2')

    net.add_router_edge('R2', 'R4')
    net.add_router_edge('R4', 'R2')

    net.add_router_edge('R3', 'R5')
    net.add_router_edge('R5', 'R3')

    net.add_router_edge('R4', 'R5')
    net.add_router_edge('R5', 'R4')

    net.add_bgp_neighbor('R1',
                         'R2',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R1',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R1',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R2',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R2',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R5',
                         'R3',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.add_bgp_neighbor('R5',
                         'R4',
                         router_a_iface=VALUENOTSET,
                         router_b_iface=VALUENOTSET)
    net.set_iface_names()
    return net
示例#9
0
def ibgp_net():
    graph = NetworkGraph()
    peer, r1, r2, r3, r4 = 'Ext', 'R1', 'R2', 'R3', 'R4'
    # Add routers
    graph.add_peer(peer)
    graph.add_router(r1)
    graph.add_router(r2)
    graph.add_router(r3)
    graph.add_router(r4)
    # Connect routers
    graph.add_peer_edge(peer, r1)
    graph.add_peer_edge(r1, peer)
    graph.add_router_edge(r1, r2)
    graph.add_router_edge(r2, r1)
    graph.add_router_edge(r1, r3)
    graph.add_router_edge(r3, r1)
    graph.add_router_edge(r4, r2)
    graph.add_router_edge(r2, r4)
    graph.add_router_edge(r4, r3)
    graph.add_router_edge(r3, r4)
    # Enable OSPF
    graph.enable_ospf(r1, 100)
    graph.enable_ospf(r2, 100)
    graph.enable_ospf(r3, 100)
    graph.enable_ospf(r4, 100)
    # Set BGP ASN
    graph.set_bgp_asnum(peer, 200)
    graph.set_bgp_asnum(r1, 100)
    graph.set_bgp_asnum(r2, 100)
    graph.set_bgp_asnum(r3, 100)
    graph.set_bgp_asnum(r4, 100)
    # Establish BGP peering
    graph.add_bgp_neighbor(peer, r1)
    graph.add_bgp_neighbor(r1, r2)
    graph.add_bgp_neighbor(r1, r3)
    graph.add_bgp_neighbor(r1, r4)
    graph.add_bgp_neighbor(r2, r3)
    graph.add_bgp_neighbor(r2, r4)
    graph.add_bgp_neighbor(r3, r4)
    # Assign interfaces
    graph.set_iface_names()
    # Some internal to be announced network
    net = ip_network(u'128.0.0.0/24')
    prefix = '128_0_0_0'
    lo0 = 'lo0'
    prefix_map = {prefix: net}
    loaddr = ip_interface("%s/%d" % (net.hosts().next(), net.prefixlen))
    graph.set_loopback_addr(peer, lo0, loaddr)
    graph.add_bgp_announces(peer, lo0)

    # Synthesize connectivity
    syn = ConnectedSyn(graph, full=True, default_ibgp_lo='lo10')
    assert syn.synthesize()

    # Some route map
    actions = [ActionSetLocalPref(200)]
    line = RouteMapLine(matches=None,
                        actions=actions,
                        access=Access.permit,
                        lineno=100)
    route_map = RouteMap(name="ImpPolicy", lines=[line])
    graph.add_route_map(r1, route_map)
    graph.add_bgp_import_route_map(r1, peer, route_map.name)
    # Add networks
    # Note, some of the loop back interfaces where generated due to
    # ibgp peering in ConnectedSyn
    for router in graph.local_routers_iter():
        for iface in graph.get_ifaces(router):
            graph.add_ospf_network(router, iface, 0)
        for lo in graph.get_loopback_interfaces(router):
            graph.add_ospf_network(router, lo, 0)

    # Write the configs
    gns3 = GNS3Topo(graph, prefix_map=prefix_map)
    gns3.write_configs('out-configs/ibgp')