示例#1
0
def base_minimizer(model,
                   data,
                   functions,
                   algo,
                   max_evals,
                   trials,
                   rseed=1337,
                   full_model_string=None,
                   notebook_name=None,
                   verbose=True,
                   stack=3,
                   keep_temp=False,
                   data_args=None):
    if full_model_string is not None:
        model_str = full_model_string
    else:
        model_str = get_hyperopt_model_string(model,
                                              data,
                                              functions,
                                              notebook_name,
                                              verbose,
                                              stack,
                                              data_args=data_args)
    temp_file = './temp_model.py'
    write_temp_files(model_str, temp_file)

    if 'temp_model' in sys.modules:
        del sys.modules["temp_model"]

    try:
        from temp_model import keras_fmin_fnct, get_space
    except:
        print("Unexpected error: {}".format(sys.exc_info()[0]))
        raise
    try:
        if not keep_temp:
            os.remove(temp_file)
            os.remove(temp_file + 'c')
    except OSError:
        pass

    try:
        # for backward compatibility.
        return (fmin(keras_fmin_fnct,
                     space=get_space(),
                     algo=algo,
                     max_evals=max_evals,
                     trials=trials,
                     rseed=rseed,
                     return_argmin=True), get_space())
    except TypeError:
        pass

    return (fmin(keras_fmin_fnct,
                 space=get_space(),
                 algo=algo,
                 max_evals=max_evals,
                 trials=trials,
                 rstate=np.random.RandomState(rseed),
                 return_argmin=True), get_space())
示例#2
0
文件: optim.py 项目: ww880412/hyperas
def base_minimizer(model, data, algo, max_evals, trials, rseed=1337, full_model_string=None):

    if full_model_string is not None:
        model_str = full_model_string
    else:
        model_str = get_hyperopt_model_string(model, data)
    write_temp_files(model_str)

    try:
        from temp_model import keras_fmin_fnct, get_space
    except:
        print("Unexpected error: {}".format(sys.exc_info()[0]))
        raise
    try:
        os.remove('./temp_model.py')
        os.remove('./temp_model.pyc')
    except OSError:
        pass

    try:  # for backward compatibility.
        best_run = fmin(keras_fmin_fnct,
                        space=get_space(),
                        algo=algo,
                        max_evals=max_evals,
                        trials=trials,
                        rseed=rseed)
    except TypeError:
        best_run = fmin(keras_fmin_fnct,
                        space=get_space(),
                        algo=algo,
                        max_evals=max_evals,
                        trials=trials,
                        rstate=np.random.RandomState(rseed))

    return best_run
示例#3
0
def base_minimizer(model, data, functions, algo, max_evals, trials,
                   rseed=1337, full_model_string=None, notebook_name=None,
                   verbose=True, stack=3, keep_temp=False):
    if full_model_string is not None:
        model_str = full_model_string
    else:
        model_str = get_hyperopt_model_string(model, data, functions, notebook_name, verbose, stack)
    temp_file = './temp_model.py'
    write_temp_files(model_str, temp_file)

    if 'temp_model' in sys.modules:
        del sys.modules["temp_model"]

    try:
        from temp_model import keras_fmin_fnct, get_space
    except:
        print("Unexpected error: {}".format(sys.exc_info()[0]))
        raise
    try:
        if not keep_temp:
            os.remove(temp_file)
            os.remove(temp_file + 'c')
    except OSError:
        pass

    try:
        # for backward compatibility.
        return (
            fmin(keras_fmin_fnct,
                 space=get_space(),
                 algo=algo,
                 max_evals=max_evals,
                 trials=trials,
                 rseed=rseed,
                 return_argmin=True),
            get_space()
        )
    except TypeError:
        pass

    return (
        fmin(keras_fmin_fnct,
             space=get_space(),
             algo=algo,
             max_evals=max_evals,
             trials=trials,
             rstate=np.random.RandomState(rseed),
             return_argmin=True),
        get_space()
    )
示例#4
0
def base_minimizer(model,
                   data,
                   algo,
                   max_evals,
                   trials,
                   rseed=1337,
                   full_model_string=None):

    if full_model_string is not None:
        model_str = full_model_string
    else:
        model_str = get_hyperopt_model_string(model, data)
    write_temp_files(model_str)

    try:
        from temp_model import keras_fmin_fnct, get_space
    except:
        print("Unexpected error: {}".format(sys.exc_info()[0]))
        raise
    try:
        os.remove('./temp_model.py')
        os.remove('./temp_model.pyc')
    except OSError:
        pass

    best_run = fmin(keras_fmin_fnct,
                    space=get_space(),
                    algo=algo,
                    max_evals=max_evals,
                    trials=trials,
                    rseed=rseed)

    return best_run
示例#5
0
文件: optim.py 项目: ypocket/hyperas
def base_minimizer(model,
                   data,
                   algo,
                   max_evals,
                   trials,
                   rseed=1337,
                   full_model_string=None,
                   notebook_name=None,
                   verbose=True,
                   stack=3):

    if full_model_string is not None:
        model_str = full_model_string
    else:
        model_str = get_hyperopt_model_string(model, data, notebook_name,
                                              verbose, stack)
    temp_file = './temp_model.py'
    write_temp_files(model_str, temp_file)

    try:
        from temp_model import keras_fmin_fnct, get_space
    except:
        print("Unexpected error: {}".format(sys.exc_info()[0]))
        raise
    try:
        os.remove(temp_file)
        os.remove(temp_file + 'c')
    except OSError:
        pass

    try:  # for backward compatibility.
        return fmin(keras_fmin_fnct,
                    space=get_space(),
                    algo=algo,
                    max_evals=max_evals,
                    trials=trials,
                    rseed=rseed)
    except TypeError:
        pass

    return fmin(keras_fmin_fnct,
                space=get_space(),
                algo=algo,
                max_evals=max_evals,
                trials=trials,
                rstate=np.random.RandomState(rseed))
示例#6
0
文件: optim.py 项目: dhammack/hyperas
def minimize(model, data, algo, max_evals, trials):
    import inspect
    import re
    model_string = inspect.getsource(model)
    data_string = inspect.getsource(data)

    parts = re.findall(r"(\w+(?=\s*[\=\(]\s*\{\{[^}]+}\}))", model_string)
    part_dict = {}
    for i, part in enumerate(parts):
        if part in part_dict.keys():
            part_dict[part] += 1
            parts[i] = part + "_" + str(part_dict[part])
        else:
            part_dict[part] = 0

    aug_parts = []
    for (i, part) in enumerate(parts):
        aug_parts.append("space['" + part + "']")

    hyperopt_params = re.findall(r"(\{\{[^}]+}\})", model_string)
    for (i, param) in enumerate(hyperopt_params):
        hyperopt_params[i] = re.sub(r"[\{\}]", '', param)

    space = "def get_space(): \n return {\n"
    for name, param in zip(parts, hyperopt_params):
        param = re.sub(r"\(", "('" + name + "', ", param)
        space += "'" + name + "': hp." + param + ","
    space = space[:-1]
    space += "\n}"
    print('>>> Hyperas search space:\n')
    print(space)

    first_line = model_string.split("\n")[0]
    model_string = model_string.replace(first_line,
                                        "def keras_fmin_fnct(space):\n")

    # model_string = re.sub(r"def \s*\w*\s*\(", "def keras_fmin_fnct(space, ", model_string)
    result = re.sub(r"(\{\{[^}]+}\})",
                    lambda match: aug_parts.pop(0),
                    model_string,
                    count=len(parts))
    print('>>> Resulting replaced keras model:\n')
    print(result)

    first_line = data_string.split("\n")[0]
    data_string = data_string.replace(first_line, "")
    data_string = re.sub(r"return.*", "", data_string)

    split_data = data_string.split("\n")
    for i, line in enumerate(split_data):
        split_data[i] = line.strip() + "\n"
    data_string = ''.join(split_data)
    print(">>> Data")
    print(data_string)

    with open('./temp_model.py', 'w') as f:
        f.write("from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n")
        f.write(data_string)
        f.write("\n\n")
        f.write(result)
        f.write("\n\n")
        f.write(space)
        f.close()

    import sys
    sys.path.append(".")
    from temp_model import keras_fmin_fnct, get_space
    try:
        os.remove('./temp_model.py')
        os.remove('./temp_model.pyc')
    except OSError:
        pass

    best = fmin(keras_fmin_fnct,
                space=get_space(),
                algo=algo,
                max_evals=max_evals,
                trials=trials)
    return best