def construct_latent_tower(self, images, time_axis): """Create the latent tower.""" # No latent in the first phase first_phase = tf.less( self.get_iteration_num(), self.hparams.num_iterations_1st_stage) # use all frames by default but this allows more # predicted frames at inference time latent_num_frames = self.hparams.latent_num_frames tf.logging.info("Creating latent tower with %d frames." % latent_num_frames) if latent_num_frames > 0: images = images[:latent_num_frames] return common_video.conv_latent_tower( images=images, time_axis=time_axis, latent_channels=self.hparams.latent_channels, min_logvar=self.hparams.latent_std_min, is_training=self.is_training, random_latent=first_phase, tiny_mode=self.hparams.tiny_mode)
def construct_latent_tower(self, images, time_axis): """Create the latent tower.""" # No latent in the first phase first_phase = tf.less( self.get_iteration_num(), self.hparams.num_iterations_1st_stage) # use all frames by default but this allows more # predicted frames at inference time latent_num_frames = self.hparams.latent_num_frames tf.logging.info("Creating latent tower with %d frames." % latent_num_frames) if latent_num_frames > 0: images = images[:latent_num_frames] return common_video.conv_latent_tower( images=images, time_axis=time_axis, latent_channels=self.hparams.latent_channels, min_logvar=self.hparams.latent_std_min, is_training=self.is_training, random_latent=first_phase, tiny_mode=self.hparams.tiny_mode, small_mode=self.hparams.small_mode)