示例#1
0
def transformer_prepare_encoder(inputs, target_space, hparams):
    """Prepare one shard of the model for the encoder.

  Args:
    inputs: a Tensor.
    target_space: a Tensor.
    hparams: run hyperparameters

  Returns:
    encoder_input: a Tensor, bottom of encoder stack
    encoder_self_attention_bias: a Tensor, containing large negative values
      to implement masked attention and possibly baises for diagonal
      alignments
    encoder_padding: a Tensor
  """
    # Flatten inputs.
    ishape_static = inputs.shape.as_list()
    encoder_input = inputs
    encoder_padding = common_attention.embedding_to_padding(encoder_input)
    encoder_self_attention_bias = common_attention.attention_bias_ignore_padding(
        encoder_padding)
    # Append target_space_id embedding to inputs.
    emb_target_space = common_layers.embedding(target_space,
                                               32,
                                               ishape_static[-1],
                                               name="target_space_embedding")
    emb_target_space = tf.reshape(emb_target_space, [1, 1, -1])
    encoder_input += emb_target_space
    if hparams.pos == "timing":
        encoder_input = common_attention.add_timing_signal_1d(encoder_input)
    return (encoder_input, encoder_self_attention_bias, encoder_padding)
def transformer_prepare_encoder(inputs, target_space, hparams):
  """Prepare one shard of the model for the encoder.

  Args:
    inputs: a Tensor.
    target_space: a Tensor.
    hparams: run hyperparameters

  Returns:
    encoder_input: a Tensor, bottom of encoder stack
    encoder_self_attention_bias: a Tensor, containing large negative values
      to implement masked attention and possibly baises for diagonal
      alignments
    encoder_padding: a Tensor
  """
  # Flatten inputs.
  ishape_static = inputs.shape.as_list()
  encoder_input = inputs
  encoder_padding = common_attention.embedding_to_padding(encoder_input)
  encoder_self_attention_bias = common_attention.attention_bias_ignore_padding(
      encoder_padding)
  # Append target_space_id embedding to inputs.
  emb_target_space = common_layers.embedding(
      target_space, 32, ishape_static[-1], name="target_space_embedding")
  emb_target_space = tf.reshape(emb_target_space, [1, 1, -1])
  encoder_input += emb_target_space
  if hparams.pos == "timing":
    encoder_input = common_attention.add_timing_signal_1d(encoder_input)
  return (encoder_input, encoder_self_attention_bias, encoder_padding)