示例#1
0
def GeneralGRUCell(candidate_transform,
                   memory_transform_fn=None,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
    r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.Gate for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform_fn: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
    gate_block = [  # u_t
        candidate_transform(),
        core.AddConstant(constant=sigmoid_bias),
        gate_nonlinearity(),
    ]
    reset_block = [  # r_t
        candidate_transform(),
        core.AddConstant(
            constant=sigmoid_bias),  # Want bias to start positive.
        gate_nonlinearity(),
    ]
    candidate_block = [
        cb.Branch([], reset_block),
        cb.Multiply(),  # Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
        candidate_transform(),  # Final projection + tanh to get Ct
        candidate_nonlinearity(),  # Candidate gate

        # Only apply dropout on the C gate. Paper reports 0.1 as a good default.
        core.Dropout(rate=dropout_rate_c)
    ]
    memory_transform = memory_transform_fn() if memory_transform_fn else []
    return cb.Serial([
        cb.Branch(memory_transform, gate_block, candidate_block),
        cb.Gate(),
    ])
示例#2
0
def GeneralGRUCell(candidate_transform,
                   memory_transform=combinators.Identity,
                   gate_nonlinearity=core.Sigmoid,
                   candidate_nonlinearity=core.Tanh,
                   dropout_rate_c=0.1,
                   sigmoid_bias=0.5):
  r"""Parametrized Gated Recurrent Unit (GRU) cell construction.

  GRU update equations:
  $$ Update gate: u_t = \sigmoid(U' * s_{t-1} + B') $$
  $$ Reset gate: r_t = \sigmoid(U'' * s_{t-1} + B'') $$
  $$ Candidate memory: c_t = \tanh(U * (r_t \odot s_{t-1}) + B) $$
  $$ New State: s_t = u_t \odot s_{t-1} + (1 - u_t) \odot c_t $$

  See combinators.GateBranches for details on the gating function.


  Args:
    candidate_transform: Transform to apply inside the Candidate branch. Applied
      before nonlinearities.
    memory_transform: Optional transformation on the memory before gating.
    gate_nonlinearity: Function to use as gate activation. Allows trying
      alternatives to Sigmoid, such as HardSigmoid.
    candidate_nonlinearity: Nonlinearity to apply after candidate branch. Allows
      trying alternatives to traditional Tanh, such as HardTanh
    dropout_rate_c: Amount of dropout on the transform (c) gate. Dropout works
      best in a GRU when applied exclusively to this branch.
    sigmoid_bias: Constant to add before sigmoid gates. Generally want to start
      off with a positive bias.

  Returns:
    A model representing a GRU cell with specified transforms.
  """
  return combinators.Serial(
      combinators.Branch(num_branches=3),
      combinators.Parallel(
          # s_{t-1} branch - optionally transform
          # Typically is an identity.
          memory_transform(),

          # u_t (Update gate) branch
          combinators.Serial(
              candidate_transform(),
              # Want bias to start out positive before sigmoids.
              core.AddConstant(constant=sigmoid_bias),
              gate_nonlinearity()),

          # c_t (Candidate) branch
          combinators.Serial(
              combinators.Branch(num_branches=2),
              combinators.Parallel(
                  combinators.Identity(),
                  # r_t (Reset) Branch
                  combinators.Serial(
                      candidate_transform(),
                      # Want bias to start out positive before sigmoids.
                      core.AddConstant(constant=sigmoid_bias),
                      gate_nonlinearity())),
              ## Gate S{t-1} with sigmoid(candidate_transform(S{t-1}))
              combinators.MultiplyBranches(),

              # Final projection + tanh to get Ct
              candidate_transform(),
              candidate_nonlinearity()),  # Candidate gate

          # Only apply dropout on the C gate.
          # Paper reports that 0.1 is a good default.
          core.Dropout(rate=dropout_rate_c)),

      # Gate memory and candidate
      combinators.GateBranches())