def test_increase_layers_until_stop_decreasing_test_error(self):
        data = self.mnist_data
        input = InputLayer(784)
        hidden = Layer(input, HIDDEN_NOES, self.session, non_liniarity=tf.sigmoid, bactivate=False)
        output = Layer(hidden, 10, self.session, non_liniarity=tf.sigmoid, bactivate=False, supervised_cost=1.0)

        best_score = train_until_no_improvement_for_epochs(data, output, 3)

        for hidden_layer_count in range(1, 10):
            print("hidden_layers {0} best_score {1}".format(hidden_layer_count, best_score))

            candidate = output.clone()
            last_hidden_layer = candidate.last_layer.input_layer
            last_hidden_layer.add_intermediate_layer(
                lambda input_layer: Layer(
                    input_layer, HIDDEN_NOES, self.session, non_liniarity=tf.sigmoid, bactivate=False
                )
            )

            new_best_score = train_until_no_improvement_for_epochs(data, candidate, 3)

            if new_best_score > best_score:
                # failed to get improvement
                print("failed to get improvement with layer {0}".format(hidden_layer_count))
                break
            else:
                best_score = new_best_score
                output = candidate
示例#2
0
    def test_get_layers_list(self):
        input_p = tf.placeholder("float", (None, 10))
        layer = Layer(InputLayer(input_p), 1, session=self.session)
        layer2 = Layer(layer, 2, session=self.session)
        layer3 = Layer(layer2, 3, session=self.session)

        self.assertEquals(layer.get_layers_list(), [layer, layer2, layer3])
示例#3
0
    def test_layer_noisy_input_activation(self):
        input_size = 100
        noise_std = 1.
        input_p = tf.placeholder("float", (None, input_size))
        layer = Layer(InputLayer(input_p), input_size,
                      weights=np.diag(np.ones(input_size, dtype=np.float32)),
                      bias=np.zeros(input_size, dtype=np.float32),
                      session=self.session,
                      non_liniarity=tf.identity,
                      noise_std=noise_std)

        result_noisy = self.session.run(layer.activation_train,
                                        feed_dict={
                                            input_p: np.ones(input_size, dtype=np.float32).reshape((1, input_size))})

        self.assertAlmostEqual(result_noisy.std(), noise_std, delta=noise_std / 5.,
                               msg="the result std should be the noise_std")

        layer.predict = True

        result_clean = self.session.run(layer.activation_predict, feed_dict={
            input_p: np.ones(input_size, dtype=np.float32).reshape((1, input_size))})

        self.assertAlmostEqual(result_clean.std(), 0., places=7,
                               msg="There should be no noise in the activation")
示例#4
0
    def test_resize(self):
        output_nodes = 10
        input_p = tf.placeholder("float", (None, 10))
        layer = Layer(InputLayer(input_p), output_nodes, session=self.session)
        layer.resize(output_nodes + 1)

        print layer._bias.get_shape()

        self.assertEqual(layer.activation_predict.get_shape().as_list(), [None, output_nodes + 1])
        self.assertEquals(layer.output_nodes, output_nodes + 1)
示例#5
0
    def test_resize(self):
        inputs = tf.placeholder(tf.float32, shape=(None, 784))

        bactivate = True
        net1 = InputLayer(inputs)
        net2 = Layer(net1, 10, self.session, bactivate=bactivate)
        bn1 = BatchNormLayer(net2, self.session)
        output_net = Layer(bn1, 10, self.session, bactivate=False)

        print(self.session.run(output_net.activation_predict, feed_dict={inputs: np.zeros(shape=(1, 784))}))

        net2.resize(net2.output_nodes + 1)

        print(self.session.run(output_net.activation_predict, feed_dict={inputs: np.zeros(shape=(1, 784))}))
示例#6
0
    def test_reshape(self):
        output_nodes = 2
        input_p = tf.placeholder("float", (None, 2))
        layer = Layer(InputLayer(input_p), output_nodes, session=self.session,
                      weights=np.array([[100.0]], dtype=np.float32))

        result1 = self.session.run(layer.activation_predict, feed_dict={layer.input_placeholder: [[1., 1.]]})

        layer.resize(3)
        result2 = self.session.run(layer.activation_predict, feed_dict={layer.input_placeholder: [[1., 1.]]})

        print(result1)
        print(result2)

        self.assertEquals(len(result2[0]), 3)
示例#7
0
    def test_reconstruction_of_single_input(self):
        input_layer = InputLayer(1)
        layer = Layer(input_layer, 1, bactivate=True, session=self.session, noise_std=0.3)

        cost = layer.unsupervised_cost_train()
        optimizer = tf.train.AdamOptimizer(0.1).minimize(cost)

        self.session.run(tf.initialize_all_variables())

        data = np.random.normal(0.5, 0.5, size=[200, 1])

        for x in range(100):
            self.session.run([optimizer], feed_dict={input_layer.input_placeholder: data})

        result = self.session.run([cost], feed_dict={input_layer.input_placeholder: data})
        print result
示例#8
0
    def test_clone(self):
        inputs = tf.placeholder(tf.float32, shape=(None, 784))

        net1 = InputLayer(inputs)
        bn1 = BatchNormLayer(net1, self.session)
        net2 = Layer(bn1, 8, self.session)
        bn2 = BatchNormLayer(net2, self.session)
        net2 = Layer(bn2, 6, self.session)
        bn3 = BatchNormLayer(net2, self.session)
        net3 = Layer(bn3, 4, self.session)
        output_net = Layer(net3, 2, self.session)

        cloned_net = output_net.clone(self.session)

        self.assertNotEquals(cloned_net, output_net)
        self.assertNotEquals(cloned_net.input_layer, output_net.input_layer)
        self.assertEqual(len(list(cloned_net.all_layers)), len(list(output_net.all_layers)))
示例#9
0
    def reconstruction_loss_for(self, output_nodes):
        data = self.mnist_data
        bw_layer1 = Layer(InputLayer(784), output_nodes, session=self.session, noise_std=1.0, bactivate=True)

        cost = bw_layer1.unsupervised_cost_train()
        optimizer = tf.train.AdamOptimizer(0.1).minimize(cost)

        self.session.run(tf.initialize_all_variables())

        end_epoch = data.train.epochs_completed + 3

        while data.train.epochs_completed <= end_epoch:
            train_x, train_y = data.train.next_batch(100)
            self.session.run(optimizer, feed_dict={bw_layer1.input_placeholder: train_x})

        result = self.session.run(bw_layer1.unsupervised_cost_predict(),
                                  feed_dict={bw_layer1.input_placeholder: data.test.images})
        print("denoising with %s hidden layer had cost %s" % (output_nodes, result))
        return result
示例#10
0
    def test_noise_reconstruction(self):
        INPUT_DIM = 10
        HIDDEN_NODES = 1
        bw_layer1 = Layer(InputLayer(INPUT_DIM), HIDDEN_NODES, session=self.session, noise_std=1.0, bactivate=True)

        # single cluster reconstruct
        data = []
        for i in range(10):
            data.append([i*.1]*INPUT_DIM)

        cost = bw_layer1.unsupervised_cost_train()
        optimizer = tf.train.AdamOptimizer(0.1).minimize(cost)

        self.session.run(tf.initialize_all_variables())

        for j in range(200):
            self.session.run(optimizer, feed_dict={bw_layer1.input_placeholder: data})

        result = self.session.run(bw_layer1.unsupervised_cost_predict(),
                                  feed_dict={bw_layer1.input_placeholder: data})

        print("denoising with %s hidden layer had cost %s" % (HIDDEN_NODES, result))