def glob(self, filename): """Returns a list of files that match the given pattern(s).""" if isinstance(filename, six.string_types): return [ # Convert the filenames to string from bytes. compat.as_str_any(matching_filename) for matching_filename in py_glob.glob(compat.as_bytes(filename)) ] else: return [ # Convert the filenames to string from bytes. compat.as_str_any(matching_filename) for single_filename in filename for matching_filename in py_glob.glob( compat.as_bytes(single_filename)) ]
def stat(self, filename): """Returns file statistics for a given path.""" # NOTE: Size of the file is given by .st_size as returned from # os.stat(), but we convert to .length try: file_length = os.stat(compat.as_bytes(filename)).st_size except OSError: raise errors.NotFoundError(None, None, "Could not find file") return StatData(file_length)
def __init__(self, filename, mode): if mode not in ('r', 'rb', 'br'): raise NotImplementedError( "mode {} not supported by compat GFile".format(mode)) self.filename = compat.as_bytes(filename) self.buff_chunk_size = _DEFAULT_BLOCK_SIZE self.buff = None self.buff_offset = 0 self.offset = 0 self.binary_mode = (mode != 'r')
def __init__(self, filename, mode): if mode not in ('r', 'rb', 'br', 'w', 'wb', 'bw'): raise NotImplementedError( "mode {} not supported by compat GFile".format(mode)) self.filename = compat.as_bytes(filename) self.fs = get_filesystem(self.filename) self.fs_supports_append = hasattr(self.fs, 'append') self.buff_chunk_size = _DEFAULT_BLOCK_SIZE self.buff = None self.buff_offset = 0 self.offset = 0 self.write_temp = None self.write_started = False self.binary_mode = 'b' in mode self.write_mode = 'w' in mode self.closed = False
def write(self, filename, file_content, binary_mode=False): """Writes string file contents to a file. Args: filename: string, a path file_content: string, the contents binary_mode: bool, write as binary if True, otherwise text """ client = boto3.client("s3", endpoint_url=self._s3_endpoint) bucket, path = self.bucket_and_path(filename) # Always convert to bytes for writing if binary_mode: if not isinstance(file_content, bytes): raise TypeError("File content type must be bytes") else: file_content = compat.as_bytes(file_content) client.put_object(Body=file_content, Bucket=bucket, Key=path)
def __init__(self, filename, mode): if mode not in ("r", "rb", "br", "w", "wb", "bw"): raise NotImplementedError( "mode {} not supported by compat GFile".format(mode)) self.filename = compat.as_bytes(filename) self.fs = get_filesystem(self.filename) self.fs_supports_append = hasattr(self.fs, "append") self.buff = None # The buffer offset and the buffer chunk size are measured in the # natural units of the underlying stream, i.e. bytes for binary mode, # or characters in text mode. self.buff_chunk_size = _DEFAULT_BLOCK_SIZE self.buff_offset = 0 self.continuation_token = None self.write_temp = None self.write_started = False self.binary_mode = "b" in mode self.write_mode = "w" in mode self.closed = False
def exists(self, filename): """Determines whether a path exists or not.""" return os.path.exists(compat.as_bytes(filename))
def isdir(self, dirname): """Returns whether the path is a directory or not.""" return os.path.isdir(compat.as_bytes(dirname))
def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values): tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])
def make_tensor_proto(values, dtype=None, shape=None, verify_shape=False): """Create a TensorProto. Args: values: Values to put in the TensorProto. dtype: Optional tensor_pb2 DataType value. shape: List of integers representing the dimensions of tensor. verify_shape: Boolean that enables verification of a shape of values. Returns: A `TensorProto`. Depending on the type, it may contain data in the "tensor_content" attribute, which is not directly useful to Python programs. To access the values you should convert the proto back to a numpy ndarray with `tensor_util.MakeNdarray(proto)`. If `values` is a `TensorProto`, it is immediately returned; `dtype` and `shape` are ignored. Raises: TypeError: if unsupported types are provided. ValueError: if arguments have inappropriate values or if verify_shape is True and shape of values is not equals to a shape from the argument. make_tensor_proto accepts "values" of a python scalar, a python list, a numpy ndarray, or a numpy scalar. If "values" is a python scalar or a python list, make_tensor_proto first convert it to numpy ndarray. If dtype is None, the conversion tries its best to infer the right numpy data type. Otherwise, the resulting numpy array has a convertible data type with the given dtype. In either case above, the numpy ndarray (either the caller provided or the auto converted) must have the convertible type with dtype. make_tensor_proto then converts the numpy array to a tensor proto. If "shape" is None, the resulting tensor proto represents the numpy array precisely. Otherwise, "shape" specifies the tensor's shape and the numpy array can not have more elements than what "shape" specifies. """ if isinstance(values, tensor_pb2.TensorProto): return values if dtype: dtype = dtypes.as_dtype(dtype) is_quantized = dtype in [ dtypes.qint8, dtypes.quint8, dtypes.qint16, dtypes.quint16, dtypes.qint32, ] # We first convert value to a numpy array or scalar. if isinstance(values, (np.ndarray, np.generic)): if dtype: nparray = values.astype(dtype.as_numpy_dtype) else: nparray = values elif callable(getattr(values, "__array__", None)) or isinstance( getattr(values, "__array_interface__", None), dict): # If a class has the __array__ method, or __array_interface__ dict, then it # is possible to convert to numpy array. nparray = np.asarray(values, dtype=dtype) # This is the preferred way to create an array from the object, so replace # the `values` with the array so that _FlattenToStrings is not run. values = nparray else: if values is None: raise ValueError("None values not supported.") # if dtype is provided, forces numpy array to be the type # provided if possible. if dtype and dtype.is_numpy_compatible: np_dt = dtype.as_numpy_dtype else: np_dt = None # If shape is None, numpy.prod returns None when dtype is not set, but raises # exception when dtype is set to np.int64 if shape is not None and np.prod(shape, dtype=np.int64) == 0: nparray = np.empty(shape, dtype=np_dt) else: _Assertconvertible(values, dtype) nparray = np.array(values, dtype=np_dt) # check to them. # We need to pass in quantized values as tuples, so don't apply the shape if (list(nparray.shape) != _GetDenseDimensions(values) and not is_quantized): raise ValueError( """Argument must be a dense tensor: %s""" """ - got shape %s, but wanted %s.""" % (values, list(nparray.shape), _GetDenseDimensions(values))) # python/numpy default float type is float64. We prefer float32 instead. if (nparray.dtype == np.float64) and dtype is None: nparray = nparray.astype(np.float32) # python/numpy default int type is int64. We prefer int32 instead. elif (nparray.dtype == np.int64) and dtype is None: downcasted_array = nparray.astype(np.int32) # Do not down cast if it leads to precision loss. if np.array_equal(downcasted_array, nparray): nparray = downcasted_array # if dtype is provided, it must be convertible with what numpy # conversion says. numpy_dtype = dtypes.as_dtype(nparray.dtype) if numpy_dtype is None: raise TypeError("Unrecognized data type: %s" % nparray.dtype) # If dtype was specified and is a quantized type, we convert # numpy_dtype back into the quantized version. if is_quantized: numpy_dtype = dtype if dtype is not None and (not hasattr(dtype, "base_dtype") or dtype.base_dtype != numpy_dtype.base_dtype): raise TypeError("Inconvertible types: %s vs. %s. Value is %s" % (dtype, nparray.dtype, values)) # If shape is not given, get the shape from the numpy array. if shape is None: shape = nparray.shape is_same_size = True shape_size = nparray.size else: shape = [int(dim) for dim in shape] shape_size = np.prod(shape, dtype=np.int64) is_same_size = shape_size == nparray.size if verify_shape: if not nparray.shape == tuple(shape): raise TypeError("Expected Tensor's shape: %s, got %s." % (tuple(shape), nparray.shape)) if nparray.size > shape_size: raise ValueError( "Too many elements provided. Needed at most %d, but received %d" % (shape_size, nparray.size)) tensor_proto = tensor_pb2.TensorProto( dtype=numpy_dtype.as_datatype_enum, tensor_shape=tensor_shape.as_shape(shape).as_proto(), ) if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1: if nparray.size * nparray.itemsize >= (1 << 31): raise ValueError( "Cannot create a tensor proto whose content is larger than 2GB." ) tensor_proto.tensor_content = nparray.tostring() return tensor_proto # If we were not given values as a numpy array, compute the proto_values # from the given values directly, to avoid numpy trimming nulls from the # strings. Since values could be a list of strings, or a multi-dimensional # list of lists that might or might not correspond to the given shape, # we flatten it conservatively. if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray): proto_values = _FlattenToStrings(values) # At this point, values may be a list of objects that we could not # identify a common type for (hence it was inferred as # np.object/dtypes.string). If we are unable to convert it to a # string, we raise a more helpful error message. # # Ideally, we'd be able to convert the elements of the list to a # common type, but this type inference requires some thinking and # so we defer it for now. try: str_values = [compat.as_bytes(x) for x in proto_values] except TypeError: raise TypeError("Failed to convert object of type %s to Tensor. " "Contents: %s. Consider casting elements to a " "supported type." % (type(values), values)) tensor_proto.string_val.extend(str_values) return tensor_proto # TensorFlow expects C order (a.k.a., eigen row major). proto_values = nparray.ravel() append_fn = GetNumpyAppendFn(proto_values.dtype) if append_fn is None: raise TypeError("Element type not supported in TensorProto: %s" % numpy_dtype.name) append_fn(tensor_proto, proto_values) return tensor_proto
def testWriteBinaryMode(self): file_path = os.path.join(self._base_dir, "temp_file") gfile.GFile(file_path, "wb").write(compat.as_bytes("testing")) with gfile.GFile(file_path, mode="r") as f: self.assertEqual("testing", f.read())