示例#1
0
 def when_multiple_values():
     """When input data contains multiple values."""
     bucket_width = range_ / tf.cast(bucket_count, tf.float64)
     offsets = data - min_
     bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
                              dtype=tf.int32)
     clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
     # Use float64 instead of float32 to avoid accumulating floating point error
     # later in tf.reduce_sum when summing more than 2^24 individual `1.0` values.
     # See https://github.com/tensorflow/tensorflow/issues/51419 for details.
     one_hots = tf.one_hot(clamped_indices,
                           depth=bucket_count,
                           dtype=tf.float64)
     bucket_counts = tf.cast(
         tf.reduce_sum(input_tensor=one_hots, axis=0),
         dtype=tf.float64,
     )
     edges = tf.linspace(min_, max_, bucket_count + 1)
     # Ensure edges[-1] == max_, which TF's linspace implementation does not
     # do, leaving it subject to the whim of floating point rounding error.
     edges = tf.concat([edges[:-1], [max_]], 0)
     left_edges = edges[:-1]
     right_edges = edges[1:]
     return tf.transpose(
         a=tf.stack([left_edges, right_edges, bucket_counts]))
示例#2
0
def histogram_continuous(name,
                         data,
                         bucket_min=None,
                         bucket_max=None,
                         bucket_count=DEFAULT_BUCKET_COUNT,
                         step=None,
                         description=None):
    """histogram for continuous data .

    Args:
        name (str): name for this summary
        data (Tensor): A `Tensor` of any shape.
        bucket_min (float|None): represent bucket min value,
            if None value of tf.reduce_min(data) will be used
        bucket_max (float|None): represent bucket max value,
            if None value tf.reduce_max(data) will be used
        bucket_count (int):  positive `int`. The output will have this many buckets.
        step (None|tf.Variable):  step value for this summary. this defaults to
            `tf.summary.experimental.get_step()`
        description (str): Optional long-form description for this summary
    """
    summary_metadata = metadata.create_summary_metadata(
        display_name=None, description=description)
    summary_scope = (getattr(tf.summary.experimental, 'summary_scope', None)
                     or tf.summary.summary_scope)
    with summary_scope(
            name,
            'histogram_summary',
            values=[data, bucket_min, bucket_max, bucket_count,
                    step]) as (tag, _):
        with tf.name_scope('buckets'):
            data = tf.cast(tf.reshape(data, shape=[-1]), tf.float64)
            if bucket_min is None:
                bucket_min = tf.reduce_min(data)
            if bucket_max is None:
                bucket_max = tf.reduce_min(data)
            range_ = bucket_max - bucket_min
            bucket_width = range_ / tf.cast(bucket_count, tf.float64)
            offsets = data - bucket_min
            bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
                                     dtype=tf.int32)
            clamped_indices = tf.clip_by_value(bucket_indices, 0,
                                               bucket_count - 1)
            one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
            bucket_counts = tf.cast(tf.reduce_sum(input_tensor=one_hots,
                                                  axis=0),
                                    dtype=tf.float64)
            edges = tf.linspace(bucket_min, bucket_max, bucket_count + 1)
            edges = tf.concat([edges[:-1], [bucket_max]], 0)
            edges = tf.cast(edges, tf.float64)
            left_edges = edges[:-1]
            right_edges = edges[1:]
            tensor = tf.transpose(
                a=tf.stack([left_edges, right_edges, bucket_counts]))
        return tf.summary.write(tag=tag,
                                tensor=tensor,
                                step=step,
                                metadata=summary_metadata)
示例#3
0
 def when_nonsingular():
   bucket_width = range_ / tf.cast(bucket_count, tf.float64)
   offsets = data - min_
   bucket_indices = tf.cast(tf.floor(offsets / bucket_width),
                            dtype=tf.int32)
   clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
   one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
   bucket_counts = tf.cast(tf.reduce_sum(input_tensor=one_hots, axis=0),
                           dtype=tf.float64)
   edges = tf.linspace(min_, max_, bucket_count + 1)
   # Ensure edges[-1] == max_, which TF's linspace implementation does not
   # do, leaving it subject to the whim of floating point rounding error.
   edges = tf.concat([edges[:-1], [max_]], 0)
   left_edges = edges[:-1]
   right_edges = edges[1:]
   return tf.transpose(a=tf.stack(
       [left_edges, right_edges, bucket_counts]))
示例#4
0
def histogram_discrete(name,
                       data,
                       bucket_min,
                       bucket_max,
                       step=None,
                       description=None):
    """histogram for discrete data.

    Args:
        name (str): name for this summary
        data (Tensor): A `Tensor` integers of any shape.
        bucket_min (int): represent bucket min value
        bucket_max (int): represent bucket max value
            bucket count is calculate as `bucket_max - bucket_min + 1`
            and output will have this many buckets.
        step (None|tf.Variable):  step value for this summary. this defaults to
            `tf.summary.experimental.get_step()`
        description (str): Optional long-form description for this summary
    """
    summary_metadata = metadata.create_summary_metadata(
        display_name=None, description=description)
    summary_scope = (getattr(tf.summary.experimental, 'summary_scope', None)
                     or tf.summary.summary_scope)
    with summary_scope(name,
                       'histogram_summary',
                       values=[data, bucket_min, bucket_max,
                               step]) as (tag, _):
        with tf.name_scope('buckets'):
            bucket_count = bucket_max - bucket_min + 1
            data = data - bucket_min
            one_hots = tf.one_hot(tf.reshape(data, shape=[-1]),
                                  depth=bucket_count)
            bucket_counts = tf.cast(
                tf.reduce_sum(input_tensor=one_hots, axis=0), tf.float64)
            edge = tf.cast(tf.range(bucket_count), tf.float64)
            # histogram can not draw when left_edge == right_edge
            left_edge = edge - 1e-12
            right_edge = edge + 1e-12
            tensor = tf.transpose(
                a=tf.stack([left_edge, right_edge, bucket_counts]))

        return tf.summary.write(tag=tag,
                                tensor=tensor,
                                step=step,
                                metadata=summary_metadata)