class TensorboardCallback(Callback):
    def __init__(self,
                 path,
                 args=None,
                 events_dir=None,
                 max_step=None,
                 save_period=10):
        self.save_period = save_period
        self.path = path
        train_dir = os.path.join(path, 'training')
        if not os.path.exists(train_dir): os.makedirs(train_dir)
        self.train_logger = Logger(train_dir)
        valid_dir = os.path.join(path, 'validation')
        if not os.path.exists(valid_dir): os.makedirs(valid_dir)
        self.valid_logger = Logger(valid_dir)
        if args:
            text = 'Parameters\n---------\n'
            for (key, val) in args.items():
                text += '- ' + key + ' = ' + str(val) + '\n'
            self.train_logger.log_text('Description', text)
            self.valid_logger.log_text('Description', text)
        if events_dir and max_step:
            events_files = [
                F for F in scan_dir(events_dir, '')[1]
                if os.path.basename(F).startswith('events')
            ]
            for events_file in events_files:
                parent_dir = os.path.dirname(events_file).split(os.sep)[-1]
                if 'training' == parent_dir:
                    train_events_file = events_file
                elif 'validation' == parent_dir:
                    valid_events_file = events_file
            self.train_logger.copyFrom(train_events_file, max_step=max_step)
            self.valid_logger.copyFrom(valid_events_file, max_step=max_step)

    def on_epoch_begin(self, epoch, logs={}):
        self.starttime = time()

    def on_epoch_end(self, epoch, logs={}):
        self.train_logger.log_scalar("Speed", time() - self.starttime, epoch)
        self.train_logger.log_scalar("sparse_categorical_accuracy_%",
                                     logs['sparse_categorical_accuracy'] * 100,
                                     epoch)
        self.train_logger.log_scalar("loss", logs['loss'], epoch)
        self.valid_logger.log_scalar("Speed", time() - self.starttime, epoch)
        self.valid_logger.log_scalar(
            "sparse_categorical_accuracy_%",
            logs['val_sparse_categorical_accuracy'] * 100, epoch)
        self.valid_logger.log_scalar("loss", logs['val_loss'], epoch)
        # Model save
        if ((epoch + 1) % self.save_period) == 0:
            self.model.save(
                os.path.join(self.path, 'save_' + str(epoch) + '.h5'))
            _, oldsaves = scan_dir(self.path, '.h5')
            for save in oldsaves:
                try:
                    if int(save.split('.')[-2].split('_')[-1]) < epoch:
                        os.remove(save)
                except:
                    continue
示例#2
0
                             sparse=args.sparse)
    eval_env = create_environment(args.env,
                                  n_env=args.n_proc,
                                  seed=42,
                                  size=args.size,
                                  sparse=args.sparse)
    is_mario = True if 'Mario' in args.env else False
    norm_input = True

    # Logger
    TB_LOGGER = Logger(sett.LOGPATH)
    print('Torch Device: %s' % sett.device)

    # Store HYPER in the log
    for key, value in args._get_kwargs():
        TB_LOGGER.log_text(tag=str(key), value=[str(value)], step=0)

    obs = env.reset()

    # Setup Model
    n_actions = env.action_space.n if env.action_space.shape == (
    ) else env.action_space.shape[0]
    n_state = env.observation_space.n if env.observation_space.shape == (
    ) else env.observation_space.shape

    conv = True if isinstance(n_state, tuple) else False

    if args.use_baseline:
        dqn = DQN(state_dim=n_state,
                  tau=args.tau,
                  action_dim=n_actions,