示例#1
0
    def __init__(self, vector_field_module, name=None, latex_name=None,
                 is_identity=False):
        r"""
        Construct a field of tangent-space automorphisms.

        TESTS::

            sage: Manifold._clear_cache_() # for doctests only
            sage: M = Manifold(2, 'M')
            sage: X.<x,y> = M.chart()
            sage: a = M.automorphism_field(name='a') ; a
            field of tangent-space automorphisms 'a' on the 2-dimensional manifold 'M'
            sage: a[:] = [[1+x^2, x*y], [0, 1+y^2]]
            sage: a.parent()
            General linear group of the free module X(M) of vector fields on
             the 2-dimensional manifold 'M'
            sage: a.parent() is M.automorphism_field_group()
            True
            sage: TestSuite(a).run()

        """
        FreeModuleAutomorphism.__init__(self, vector_field_module,
                                        name=name, latex_name=latex_name,
                                        is_identity=is_identity)
        # TensorFieldParal attributes:
        self._vmodule = vector_field_module
        self._domain = vector_field_module._domain
        self._ambient_domain = vector_field_module._ambient_domain
        # Initialization of derived quantities:
        TensorFieldParal._init_derived(self)
示例#2
0
    def __init__(self,
                 vector_field_module,
                 name=None,
                 latex_name=None,
                 is_identity=False):
        r"""
        Construct a field of tangent-space automorphisms.

        TESTS::

            sage: Manifold._clear_cache_() # for doctests only
            sage: M = Manifold(2, 'M')
            sage: X.<x,y> = M.chart()
            sage: a = M.automorphism_field(name='a') ; a
            field of tangent-space automorphisms 'a' on the 2-dimensional manifold 'M'
            sage: a[:] = [[1+x^2, x*y], [0, 1+y^2]]
            sage: a.parent()
            General linear group of the free module X(M) of vector fields on
             the 2-dimensional manifold 'M'
            sage: a.parent() is M.automorphism_field_group()
            True
            sage: TestSuite(a).run()

        """
        FreeModuleAutomorphism.__init__(self,
                                        vector_field_module,
                                        name=name,
                                        latex_name=latex_name,
                                        is_identity=is_identity)
        # TensorFieldParal attributes:
        self._vmodule = vector_field_module
        self._domain = vector_field_module._domain
        self._ambient_domain = vector_field_module._ambient_domain
        # Initialization of derived quantities:
        TensorFieldParal._init_derived(self)
示例#3
0
    def _del_derived(self, del_restrictions=True):
        r"""
        Delete the derived quantities

        INPUT:

        - ``del_restrictions`` -- (default: True) determines whether the
          restrictions of ``self`` to subdomains are deleted.

        """
        TensorFieldParal._del_derived(self, del_restrictions=del_restrictions)
        self._exterior_derivative = None
示例#4
0
    def _del_derived(self, del_restrictions=True):
        r"""
        Delete the derived quantities

        INPUT:

        - ``del_restrictions`` -- (default: True) determines whether the
          restrictions of ``self`` to subdomains are deleted.

        """
        TensorFieldParal._del_derived(self, del_restrictions=del_restrictions)
        VectorField._del_derived(self)
        self._del_dependencies()
示例#5
0
 def __init__(self, vector_field_module, name=None, latex_name=None):
     FiniteRankFreeModuleElement.__init__(self, vector_field_module, name=name,
                                      latex_name=latex_name)
     # TensorFieldParal attributes:
     self._domain = vector_field_module._domain
     self._ambient_domain = vector_field_module._ambient_domain
     # VectorField attributes:
     self._vmodule = vector_field_module
     # Initialization of derived quantities:
     TensorFieldParal._init_derived(self)
     VectorField._init_derived(self)
     # Initialization of list of quantities depending on self:
     self._init_dependencies()
示例#6
0
    def _del_derived(self, del_restrictions=True):
        r"""
        Delete the derived quantities

        INPUT:

        - ``del_restrictions`` -- (default: True) determines whether the
          restrictions of ``self`` to subdomains are deleted.

        """
        # Delete the derived quantities pertaining to the mother classes:
        FreeModuleAutomorphism._del_derived(self)
        TensorFieldParal._del_derived(self, del_restrictions=del_restrictions)
示例#7
0
    def _del_derived(self, del_restrictions=True):
        r"""
        Delete the derived quantities

        INPUT:

        - ``del_restrictions`` -- (default: True) determines whether the
          restrictions of ``self`` to subdomains are deleted.

        """
        # Delete the derived quantities pertaining to the mother classes:
        FreeModuleAutomorphism._del_derived(self)
        TensorFieldParal._del_derived(self, del_restrictions=del_restrictions)
示例#8
0
 def __init__(self, vector_field_module, name=None, latex_name=None):
     FiniteRankFreeModuleElement.__init__(self,
                                          vector_field_module,
                                          name=name,
                                          latex_name=latex_name)
     # TensorFieldParal attributes:
     self._domain = vector_field_module._domain
     self._ambient_domain = vector_field_module._ambient_domain
     # VectorField attributes:
     self._vmodule = vector_field_module
     # Initialization of derived quantities:
     TensorFieldParal._init_derived(self)
     VectorField._init_derived(self)
     # Initialization of list of quantities depending on self:
     self._init_dependencies()
示例#9
0
 def __call__(self, *args):
     r"""
     Redefinition of
     :meth:`~sage.tensor.modules.free_module_tensor.FreeModuleTensor.__call__`
     to allow for domain treatment
     """
     return TensorFieldParal.__call__(self, *args)
示例#10
0
 def _init_derived(self):
     r"""
     Initialize the derived quantities
     """
     TensorFieldParal._init_derived(self)
     self._exterior_derivative = None
示例#11
0
    def restrict(self, subdomain, dest_map=None):
        r"""
        Return the restriction of ``self`` to some subset of its domain.

        If such restriction has not been defined yet, it is constructed here.

        This is a redefinition of
        :meth:`sage.geometry.manifolds.tensorfield.TensorFieldParal.restrict`
        to take into account the identity map.

        INPUT:

        - ``subdomain`` -- open subset `U` of ``self._domain`` (must be an
          instance of :class:`~sage.geometry.manifolds.domain.ManifoldOpenSubset`)
        - ``dest_map`` -- (default: ``None``) destination map
          `\Phi:\ U \rightarrow V`, where `V` is a subset of
          ``self._codomain``
          (type: :class:`~sage.geometry.manifolds.diffmapping.DiffMapping`)
          If None, the restriction of ``self._vmodule._dest_map`` to `U` is
          used.

        OUTPUT:

        - instance of :class:`AutomorphismFieldParal` representing the
          restriction.

        EXAMPLES:

        Restriction of an automorphism field defined on `\RR^2` to a disk::

            sage: M = Manifold(2, 'R^2')
            sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
            sage: D = M.open_subset('D') # the unit open disc
            sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
            sage: a = M.automorphism_field(name='a') ; a
            field of tangent-space automorphisms 'a' on the 2-dimensional manifold 'R^2'
            sage: a[:] = [[1, x*y], [0, 3]]
            sage: a.restrict(D)
            field of tangent-space automorphisms 'a' on the open subset 'D' of the 2-dimensional manifold 'R^2'
            sage: a.restrict(D)[:]
            [  1 x*y]
            [  0   3]

        Restriction to the disk of the field of tangent-space identity maps::

            sage: id = M.tangent_identity_field() ; id
            field of tangent-space identity maps on the 2-dimensional manifold 'R^2'
            sage: id.restrict(D)
            field of tangent-space identity maps on the open subset 'D' of the 2-dimensional manifold 'R^2'
            sage: id.restrict(D)[:]
            [1 0]
            [0 1]
            sage: id.restrict(D) == D.tangent_identity_field()
            True

        """
        if subdomain == self._domain:
            return self
        if subdomain not in self._restrictions:
            if not self._is_identity:
                return TensorFieldParal.restrict(self, subdomain,
                                                 dest_map=dest_map)
            # Special case of the identity map:
            if not subdomain.is_subset(self._domain):
                raise ValueError("The provided domain is not a subset of " +
                                 "the field's domain.")
            if dest_map is None:
                dest_map = self._fmodule._dest_map.restrict(subdomain)
            elif not dest_map._codomain.is_subset(self._ambient_domain):
                raise ValueError("Argument dest_map not compatible with " +
                                 "self._ambient_domain")
            smodule = subdomain.vector_field_module(dest_map=dest_map)
            self._restrictions[subdomain] = smodule.identity_map()
        return self._restrictions[subdomain]
示例#12
0
    def restrict(self, subdomain, dest_map=None):
        r"""
        Return the restriction of ``self`` to some subset of its domain.

        If such restriction has not been defined yet, it is constructed here.

        This is a redefinition of
        :meth:`sage.geometry.manifolds.tensorfield.TensorFieldParal.restrict`
        to take into account the identity map.

        INPUT:

        - ``subdomain`` -- open subset `U` of ``self._domain`` (must be an
          instance of :class:`~sage.geometry.manifolds.domain.ManifoldOpenSubset`)
        - ``dest_map`` -- (default: ``None``) destination map
          `\Phi:\ U \rightarrow V`, where `V` is a subset of
          ``self._codomain``
          (type: :class:`~sage.geometry.manifolds.diffmapping.DiffMapping`)
          If None, the restriction of ``self._vmodule._dest_map`` to `U` is
          used.

        OUTPUT:

        - instance of :class:`AutomorphismFieldParal` representing the
          restriction.

        EXAMPLES:

        Restriction of an automorphism field defined on `\RR^2` to a disk::

            sage: M = Manifold(2, 'R^2')
            sage: c_cart.<x,y> = M.chart() # Cartesian coordinates on R^2
            sage: D = M.open_subset('D') # the unit open disc
            sage: c_cart_D = c_cart.restrict(D, x^2+y^2<1)
            sage: a = M.automorphism_field(name='a') ; a
            field of tangent-space automorphisms 'a' on the 2-dimensional manifold 'R^2'
            sage: a[:] = [[1, x*y], [0, 3]]
            sage: a.restrict(D)
            field of tangent-space automorphisms 'a' on the open subset 'D' of the 2-dimensional manifold 'R^2'
            sage: a.restrict(D)[:]
            [  1 x*y]
            [  0   3]

        Restriction to the disk of the field of tangent-space identity maps::

            sage: id = M.tangent_identity_field() ; id
            field of tangent-space identity maps on the 2-dimensional manifold 'R^2'
            sage: id.restrict(D)
            field of tangent-space identity maps on the open subset 'D' of the 2-dimensional manifold 'R^2'
            sage: id.restrict(D)[:]
            [1 0]
            [0 1]
            sage: id.restrict(D) == D.tangent_identity_field()
            True

        """
        if subdomain == self._domain:
            return self
        if subdomain not in self._restrictions:
            if not self._is_identity:
                return TensorFieldParal.restrict(self,
                                                 subdomain,
                                                 dest_map=dest_map)
            # Special case of the identity map:
            if not subdomain.is_subset(self._domain):
                raise ValueError("The provided domain is not a subset of " +
                                 "the field's domain.")
            if dest_map is None:
                dest_map = self._fmodule._dest_map.restrict(subdomain)
            elif not dest_map._codomain.is_subset(self._ambient_domain):
                raise ValueError("Argument dest_map not compatible with " +
                                 "self._ambient_domain")
            smodule = subdomain.vector_field_module(dest_map=dest_map)
            self._restrictions[subdomain] = smodule.identity_map()
        return self._restrictions[subdomain]