示例#1
0
def get_GRU_components(inputs, states, weight):
    units = weight[0].shape[0]

    kernel = K.variable(weight[0])  # shape = (input_dim, self.units * 3)
    recurrent_kernel = K.variable(
        weight[1])  # shape = (self.units, self.units * 3)
    bias = K.variable(weight[2])  # bias_shape = (3 * self.units,)
    inputs = K.variable(inputs)  # Not sure.
    h_tm1 = K.variable(states)  # Previous memory state.

    # Update gate.
    kernel_z = kernel[:, :units]
    recurrent_kernel_z = recurrent_kernel[:, :units]
    input_bias_z = bias[:units]
    # Reset gate.
    kernel_r = kernel[:, units:units * 2]
    recurrent_kernel_r = recurrent_kernel[:, units:units * 2]
    input_bias_r = bias[units:units * 2]
    # New gate.
    kernel_h = kernel[:, units * 2:]
    recurrent_kernel_h = recurrent_kernel[:, units * 2:]
    input_bias_h = bias[units * 2:]

    x_z = K.bias_add(K.dot(inputs, kernel_z), input_bias_z)
    x_r = K.bias_add(K.dot(inputs, kernel_r), input_bias_r)
    x_h = K.bias_add(K.dot(inputs, kernel_h), input_bias_h)
    recurrent_z = K.dot(h_tm1, recurrent_kernel_z)
    recurrent_r = K.dot(h_tm1, recurrent_kernel_r)

    z = hard_sigmoid(x_z +
                     recurrent_z)  # Recurrent activation = 'hard_sigmoid'.
    r = hard_sigmoid(x_r + recurrent_r)

    recurrent_h = K.dot(r * h_tm1, recurrent_kernel_h)
    # Get split part of recurrent_h.
    split_recurrent_h = K.expand_dims(h_tm1, axis=-1) * recurrent_kernel_h
    r_unsqueeze = K.expand_dims(r, axis=-1)
    recompute_recurrent_h = K.sum(r_unsqueeze * split_recurrent_h, axis=1)
    #print(recurrent_h.shape, h_tm1.shape, recurrent_kernel_h.shape, split_recurrent_h.shape)
    #print(K.get_value(recompute_recurrent_h)[0, :3], np.mean(K.get_value(recompute_recurrent_h)))
    #print(K.get_value(recurrent_h)[0, :3], np.mean(K.get_value(recurrent_h)))
    delta = np.mean(
        np.abs(K.get_value(recompute_recurrent_h) - K.get_value(recurrent_h)))
    print("delta =", delta, np.mean(K.get_value(recompute_recurrent_h)),
          np.mean(K.get_value(recurrent_h)))
    assert delta < 1e-6, "r gate is wrong."

    hh = tanh(x_h + recurrent_h)  # Activation = 'tanh'.
    # Previous and candidate state mixed by update gate.
    h = z * h_tm1 + (1 - z) * hh

    return K.get_value(h_tm1), K.get_value(h), K.get_value(z), K.get_value(
        r), K.get_value(hh), K.get_value(x_h), K.get_value(split_recurrent_h)
示例#2
0
def box_diou(b1, b2):
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh / 2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh / 2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    union_area = b1_area + b2_area - intersect_area
    iou = intersect_area / (union_area + K.epsilon())

    center_distance = K.sum(K.square(b1_xy - b2_xy), axis=-1)
    enclose_mins = K.minimum(b1_mins, b2_mins)
    enclose_maxes = K.maximum(b1_maxes, b2_maxes)
    enclose_wh = K.maximum(enclose_maxes - enclose_mins, 0.0)
    enclose_diagonal = K.sum(K.square(enclose_wh), axis=-1)
    diou = iou - 1.0 * (center_distance) / (enclose_diagonal + K.epsilon())

    diou = K.expand_dims(diou, -1)
    return diou
示例#3
0
    def call(self, inputs, mask=None, **kwargs):
        """Core implemention of soft attention

        Args:
            inputs (object): input tensor.

        Returns:
            object: weighted sum of input tensors.
        """

        attention = K.tanh(K.dot(inputs, self.W) + self.b)
        attention = K.dot(attention, self.q)

        attention = K.squeeze(attention, axis=2)

        if mask is None:
            attention = K.exp(attention)
        else:
            attention = K.exp(attention) * K.cast(mask, dtype="float32")

        attention_weight = attention / (
            K.sum(attention, axis=-1, keepdims=True) + K.epsilon())

        attention_weight = K.expand_dims(attention_weight)
        weighted_input = inputs * attention_weight
        return K.sum(weighted_input, axis=1)
示例#4
0
def build_decoder_model_without_argmax(seq2seq, input_t, output_t):
    # Remove all initializer.
    input_state = Input(shape=(seq2seq.units, ), name="decoder_state")
    decoder_inputs = Input(shape=(None, ), name="decoder_input")
    decoder_embedding = Embedding(seq2seq.tgt_token_size,
                                  seq2seq.units,
                                  input_length=None,
                                  name="decoder_emb")
    decoder_gru = GRU(seq2seq.units,
                      return_sequences=True,
                      return_state=True,
                      name="decoder_gru")
    decoder_dense = Dense(seq2seq.tgt_token_size,
                          activation="softmax",
                          name="output_dense")

    state = input_state
    for t in range(input_t, output_t):
        inputs = Lambda(slice, arguments={"index": t})(
            decoder_inputs)  # Count encoder output as time 0.
        inputs_embedding = decoder_embedding(inputs)
        decoder_outputs_time, state = decoder_gru(inputs_embedding,
                                                  initial_state=state)
    if input_t == output_t:
        decoder_outputs_time = Lambda(lambda x: K.expand_dims(x, axis=1))(
            state)
    softmax = decoder_dense(decoder_outputs_time)
    decoder_model = Model([decoder_inputs, input_state], [softmax] + [state])

    return decoder_model
示例#5
0
    def Mask(self, inputs, seq_len, mode="add"):
        """Mask operation used in multi-head self attention

        Args:
            seq_len (object): sequence length of inputs.
            mode (str): mode of mask.

        Returns:
            object: tensors after masking.
        """

        if seq_len is None:
            return inputs
        else:
            mask = K.one_hot(indices=seq_len[:, 0],
                             num_classes=K.shape(inputs)[1])
            mask = 1 - K.cumsum(mask, axis=1)

            for _ in range(len(inputs.shape) - 2):
                mask = K.expand_dims(mask, 2)

            if mode == "mul":
                return inputs * mask
            elif mode == "add":
                return inputs - (1 - mask) * 1e12
示例#6
0
def _forward(x, reduce_step, initial_states, U, mask=None):
    """Forward recurrence of the linear chain crf."""
    def _forward_step(energy_matrix_t, states):
        alpha_tm1 = states[-1]
        new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
        return new_states[0], new_states

    U_shared = K.expand_dims(K.expand_dims(U, 0), 0)

    if mask is not None:
        mask = K.cast(mask, K.floatx())
        mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
        U_shared = U_shared * mask_U

    inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
    inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])],
                           axis=1)

    last, values, _ = K.rnn(_forward_step, inputs, initial_states)
    return last, values
示例#7
0
def sparse_chain_crf_loss(y, x, U, b_start=None, b_end=None, mask=None):
    """Given the true sparsely encoded tag sequence y, input x (with mask),
    transition energies U, boundary energies b_start and b_end, it computes
    the loss function of a Linear Chain Conditional Random Field:
    loss(y, x) = NNL(P(y|x)), where P(y|x) = exp(E(y, x)) / Z.
    So, loss(y, x) = - E(y, x) + log(Z)
    Here, E(y, x) is the tag path energy, and Z is the normalization constant.
    The values log(Z) is also called free energy.
    """
    x = add_boundary_energy(x, b_start, b_end, mask)
    energy = path_energy0(y, x, U, mask)
    energy -= free_energy0(x, U, mask)
    return K.expand_dims(-energy, -1)
示例#8
0
def box_iou(b1, b2):
    """Return iou tensor

    Parameters
    ----------
    b1: tensor, shape=(i1,...,iN, 4), xywh
    b2: tensor, shape=(j, 4), xywh

    Returns
    -------
    iou: tensor, shape=(i1,...,iN, j)

    """

    # Expand dim to apply broadcasting.
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh / 2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # Expand dim to apply broadcasting.
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh / 2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou
示例#9
0
def squared_distance(input_x, input_y=None, weight=None):
  """Calculates the pairwise distance between points in X and Y.

  Args:
    input_x: n x d matrix
    input_y: m x d matrix
    weight: affinity n x m -- if provided, we normalize the distance

  Returns:
    n x m matrix of all pairwise squared Euclidean distances
  """
  if input_y is None:
    input_y = input_x
  sum_dimensions = list(range(2, K.ndim(input_x) + 1))
  input_x = K.expand_dims(input_x, axis=1)
  if weight is not None:
    # if weight provided, we normalize input_x and input_y by weight
    d_diag = K.expand_dims(K.sqrt(K.sum(weight, axis=1)), axis=1)
    input_x /= d_diag
    input_y /= d_diag
  squared_difference = K.square(input_x - input_y)
  distance = K.sum(squared_difference, axis=sum_dimensions)
  return distance
示例#10
0
def squared_distance(X, Y=None, W=None):
    '''
    Calculates the pairwise distance between points in X and Y

    X:          n x d matrix
    Y:          m x d matrix
    W:          affinity -- if provided, we normalize the distance

    returns:    n x m matrix of all pairwise squared Euclidean distances
    '''
    if Y is None:
        Y = X
    # distance = squaredDistance(X, Y)
    sum_dimensions = list(range(2, K.ndim(X) + 1))
    X = K.expand_dims(X, axis=1)
    if W is not None:
        # if W provided, we normalize X and Y by W
        D_diag = K.expand_dims(K.sqrt(K.sum(W, axis=1)), axis=1)
        X /= D_diag
        Y /= D_diag
    squared_difference = K.square(X - Y)
    distance = K.sum(squared_difference, axis=sum_dimensions)
    return distance
示例#11
0
def full_affinity(input_x, scale):
  """Calculates the symmetrized full Gaussian affinity matrix, scaled by a provided scale.

  Args:
    input_x: input dataset of size n x d
    scale: provided scale

  Returns:
    n x n affinity matrix
  """
  sigma = K.variable(scale)
  dist_x = squared_distance(input_x)
  sigma_squared = K.expand_dims(K.pow(sigma, 2), -1)
  weight_mat = K.exp(-dist_x / (2 * sigma_squared))
  return weight_mat
示例#12
0
def full_affinity(X, scale):
    '''
    Calculates the symmetrized full Gaussian affinity matrix, scaled
    by a provided scale

    X:              input dataset of size n
    scale:          provided scale

    returns:        n x n affinity matrix
    '''
    sigma = K.variable(scale)
    Dx = squared_distance(X)
    sigma_squared = K.pow(sigma, 2)
    sigma_squared = K.expand_dims(sigma_squared, -1)
    Dx_scaled = Dx / (2 * sigma_squared)
    W = K.exp(-Dx_scaled)
    return W
示例#13
0
    def gru_with_r_gate(x, weight):
        h_tm1, inputs, z, x_h, split_recurrent_h = x[0], x[1], x[2], x[3], x[4]
        weight = K.variable(weight)
        units = h_tm1.shape[-1]

        kernel_r = weight[:units, units:units * 2]
        recurrent_kernel_r = weight[units:units * 2, units:units * 2]
        input_bias_r = weight[units * 2, units:units * 2]  # Change to 1 dim.
        x_r = K.bias_add(K.dot(inputs, kernel_r), input_bias_r)
        recurrent_r = K.dot(h_tm1, recurrent_kernel_r)
        r_without_activate = x_r + recurrent_r
        r = hard_sigmoid(r_without_activate)
        #r = hard_sigmoid(x_r + recurrent_r)

        # Recompute recurrent_h by two parts.
        r_unsqueeze = K.expand_dims(r, axis=-1)
        recompute_recurrent_h = K.sum(r_unsqueeze * split_recurrent_h, axis=1)
        hh = tanh(x_h + recompute_recurrent_h)

        h = z * h_tm1 + (1 - z) * hh
        #return h
        return r
示例#14
0
def _backward(gamma, mask):
    """Backward recurrence of the linear chain crf."""
    gamma = K.cast(gamma, 'int32')

    def _backward_step(gamma_t, states):
        y_tm1 = K.squeeze(states[0], 0)
        y_t = batch_gather(gamma_t, y_tm1)
        return y_t, [K.expand_dims(y_t, 0)]

    initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
    _, y_rev, _ = K.rnn(_backward_step,
                        gamma,
                        initial_states,
                        go_backwards=True)
    y = K.reverse(y_rev, 1)

    if mask is not None:
        mask = K.cast(mask, dtype='int32')
        # mask output
        y *= mask
        # set masked values to -1
        y += -(1 - mask)
    return y
示例#15
0
    def call(self, x, mask=None):
        features_dim = self.features_dim
        step_dim = self.step_dim

        e = K.reshape(
            K.dot(K.reshape(x, (-1, features_dim)),
                  K.reshape(self.W, (features_dim, 1))),
            (-1, step_dim))  # e = K.dot(x, self.W)
        if self.bias:
            e += self.b
        e = K.tanh(e)

        a = K.exp(e)
        # apply mask after the exp. will be re-normalized next
        if mask is not None:
            # cast the mask to floatX to avoid float64 upcasting in theano
            a *= K.cast(mask, K.floatx())
        # in some cases especially in the early stages of training the sum may be almost zero
        # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
        a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
        a = K.expand_dims(a)

        c = K.sum(a * x, axis=1)
        return c
示例#16
0
def add_boundary_energy(x, b_start=None, b_end=None, mask=None):
    """Given the observations x, it adds the start boundary energy b_start (resp.
    end boundary energy b_end on the start (resp. end) elements and multiplies
    the mask."""
    if mask is None:
        if b_start is not None:
            x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1)
        if b_end is not None:
            x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1)
    else:
        mask = K.cast(mask, K.floatx())
        mask = K.expand_dims(mask, 2)
        x *= mask
        if b_start is not None:
            mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]],
                                   axis=1)
            start_mask = K.cast(K.greater(mask, mask_r), K.floatx())
            x = x + start_mask * b_start
        if b_end is not None:
            mask_l = K.concatenate(
                [mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1)
            end_mask = K.cast(K.greater(mask, mask_l), K.floatx())
            x = x + end_mask * b_end
    return x
示例#17
0
 def _forward_step(energy_matrix_t, states):
     alpha_tm1 = states[-1]
     new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
     return new_states[0], new_states
示例#18
0
def yolo_head(feats, anchors, num_classes):
    """Convert final layer features to bounding box parameters.

    Parameters
    ----------
    feats : tensor
        Final convolutional layer features.
    anchors : array-like
        Anchor box widths and heights.
    num_classes : int
        Number of target classes.

    Returns
    -------
    box_xy : tensor
        x, y box predictions adjusted by spatial location in conv layer.
    box_wh : tensor
        w, h box predictions adjusted by anchors and conv spatial resolution.
    box_conf : tensor
        Probability estimate for whether each box contains any object.
    box_class_pred : tensor
        Probability distribution estimate for each box over class labels.
    """
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.variable(anchors), [1, 1, 1, num_anchors, 2])

    # Static implementation for fixed models.
    # TODO: Remove or add option for static implementation.
    # _, conv_height, conv_width, _ = K.int_shape(feats)
    # conv_dims = K.variable([conv_width, conv_height])

    # Dynamic implementation of conv dims for fully convolutional model.
    conv_dims = K.shape(feats)[1:3]  # assuming channels last
    # In YOLO the height index is the inner most iteration.
    conv_height_index = K.arange(0, stop=conv_dims[0])
    conv_width_index = K.arange(0, stop=conv_dims[1])
    conv_height_index = K.tile(conv_height_index, [conv_dims[1]])

    # TODO: Repeat_elements and tf.split doesn't support dynamic splits.
    # conv_width_index = K.repeat_elements(conv_width_index, conv_dims[1], axis=0)
    conv_width_index = K.tile(
        K.expand_dims(conv_width_index, 0), [conv_dims[0], 1])
    conv_width_index = K.flatten(K.transpose(conv_width_index))
    conv_index = K.transpose(K.stack([conv_height_index, conv_width_index]))
    conv_index = K.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2])
    conv_index = K.cast(conv_index, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5])
    conv_dims = K.cast(K.reshape(conv_dims, [1, 1, 1, 1, 2]), K.dtype(feats))

    # Static generation of conv_index:
    # conv_index = np.array([_ for _ in np.ndindex(conv_width, conv_height)])
    # conv_index = conv_index[:, [1, 0]]  # swap columns for YOLO ordering.
    # conv_index = K.variable(
    #     conv_index.reshape(1, conv_height, conv_width, 1, 2))
    # feats = Reshape(
    #     (conv_dims[0], conv_dims[1], num_anchors, num_classes + 5))(feats)

    box_xy = K.sigmoid(feats[..., :2])
    box_wh = K.exp(feats[..., 2:4])
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.softmax(feats[..., 5:])

    # Adjust preditions to each spatial grid point and anchor size.
    # Note: YOLO iterates over height index before width index.
    box_xy = (box_xy + conv_index) / conv_dims
    box_wh = box_wh * anchors_tensor / conv_dims

    return box_xy, box_wh, box_confidence, box_class_probs
示例#19
0
def yolo_loss(args,
              anchors,
              num_classes,
              rescore_confidence=False,
              print_loss=False):
    """YOLO localization loss function.

    Parameters
    ----------
    yolo_output : tensor
        Final convolutional layer features.

    true_boxes : tensor
        Ground truth boxes tensor with shape [batch, num_true_boxes, 5]
        containing box x_center, y_center, width, height, and class.

    detectors_mask : array
        0/1 mask for detector positions where there is a matching ground truth.

    matching_true_boxes : array
        Corresponding ground truth boxes for positive detector positions.
        Already adjusted for conv height and width.

    anchors : tensor
        Anchor boxes for model.

    num_classes : int
        Number of object classes.

    rescore_confidence : bool, default=False
        If true then set confidence target to IOU of best predicted box with
        the closest matching ground truth box.

    print_loss : bool, default=False
        If True then use a tf.Print() to print the loss components.

    Returns
    -------
    mean_loss : float
        mean localization loss across minibatch
    """
    (yolo_output, true_boxes, detectors_mask, matching_true_boxes) = args
    num_anchors = len(anchors)
    object_scale = 5
    no_object_scale = 1
    class_scale = 1
    coordinates_scale = 1
    pred_xy, pred_wh, pred_confidence, pred_class_prob = yolo_head(
        yolo_output, anchors, num_classes)

    # Unadjusted box predictions for loss.
    # TODO: Remove extra computation shared with yolo_head.
    yolo_output_shape = K.shape(yolo_output)
    feats = K.reshape(yolo_output, [
        -1, yolo_output_shape[1], yolo_output_shape[2], num_anchors,
        num_classes + 5
    ])
    pred_boxes = K.concatenate(
        (K.sigmoid(feats[..., 0:2]), feats[..., 2:4]), axis=-1)

    # TODO: Adjust predictions by image width/height for non-square images?
    # IOUs may be off due to different aspect ratio.

    # Expand pred x,y,w,h to allow comparison with ground truth.
    # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
    pred_xy = K.expand_dims(pred_xy, 4)
    pred_wh = K.expand_dims(pred_wh, 4)

    pred_wh_half = pred_wh / 2.
    pred_mins = pred_xy - pred_wh_half
    pred_maxes = pred_xy + pred_wh_half

    true_boxes_shape = K.shape(true_boxes)

    # batch, conv_height, conv_width, num_anchors, num_true_boxes, box_params
    true_boxes = K.reshape(true_boxes, [
        true_boxes_shape[0], 1, 1, 1, true_boxes_shape[1], true_boxes_shape[2]
    ])
    true_xy = true_boxes[..., 0:2]
    true_wh = true_boxes[..., 2:4]

    # Find IOU of each predicted box with each ground truth box.
    true_wh_half = true_wh / 2.
    true_mins = true_xy - true_wh_half
    true_maxes = true_xy + true_wh_half

    intersect_mins = K.maximum(pred_mins, true_mins)
    intersect_maxes = K.minimum(pred_maxes, true_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]

    pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
    true_areas = true_wh[..., 0] * true_wh[..., 1]

    union_areas = pred_areas + true_areas - intersect_areas
    iou_scores = intersect_areas / union_areas

    # Best IOUs for each location.
    best_ious = K.max(iou_scores, axis=4)  # Best IOU scores.
    best_ious = K.expand_dims(best_ious)

    # A detector has found an object if IOU > thresh for some true box.
    object_detections = K.cast(best_ious > 0.6, K.dtype(best_ious))

    # TODO: Darknet region training includes extra coordinate loss for early
    # training steps to encourage predictions to match anchor priors.

    # Determine confidence weights from object and no_object weights.
    # NOTE: YOLO does not use binary cross-entropy here.
    no_object_weights = (no_object_scale * (1 - object_detections) *
                         (1 - detectors_mask))
    no_objects_loss = no_object_weights * K.square(-pred_confidence)

    if rescore_confidence:
        objects_loss = (object_scale * detectors_mask *
                        K.square(best_ious - pred_confidence))
    else:
        objects_loss = (object_scale * detectors_mask *
                        K.square(1 - pred_confidence))
    confidence_loss = objects_loss + no_objects_loss

    # Classification loss for matching detections.
    # NOTE: YOLO does not use categorical cross-entropy loss here.
    matching_classes = K.cast(matching_true_boxes[..., 4], 'int32')
    matching_classes = K.one_hot(matching_classes, num_classes)
    classification_loss = (class_scale * detectors_mask *
                           K.square(matching_classes - pred_class_prob))

    # Coordinate loss for matching detection boxes.
    matching_boxes = matching_true_boxes[..., 0:4]
    coordinates_loss = (coordinates_scale * detectors_mask *
                        K.square(matching_boxes - pred_boxes))

    confidence_loss_sum = K.sum(confidence_loss)
    classification_loss_sum = K.sum(classification_loss)
    coordinates_loss_sum = K.sum(coordinates_loss)
    total_loss = 0.5 * (
        confidence_loss_sum + classification_loss_sum + coordinates_loss_sum)
    if print_loss:
        total_loss = tf.Print(
            total_loss, [
                total_loss, confidence_loss_sum, classification_loss_sum,
                coordinates_loss_sum
            ],
            message='yolo_loss, conf_loss, class_loss, box_coord_loss:')

    return total_loss
示例#20
0
 def _backward_step(gamma_t, states):
     y_tm1 = K.squeeze(states[0], 0)
     y_t = batch_gather(gamma_t, y_tm1)
     return y_t, [K.expand_dims(y_t, 0)]
示例#21
0
def yolo_loss(args, anchors, num_classes, ignore_thresh=.5):
    '''Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(T, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    yolo_outputs = args[:3]
    y_true = args[3:]
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    input_shape = K.cast(
        K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
    grid_shapes = [
        K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0]))
        for l in range(3)
    ]
    loss = 0
    m = K.shape(yolo_outputs[0])[0]

    for l in range(3):
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        pred_xy, pred_wh, pred_confidence, pred_class_probs = yolo_head(
            yolo_outputs[l], anchors[anchor_mask[l]], num_classes, input_shape)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet box loss.
        xy_delta = (y_true[l][..., :2] - pred_xy) * grid_shapes[l][::-1]
        wh_delta = K.log(y_true[l][..., 2:4]) - K.log(pred_wh)
        # Avoid log(0)=-inf.
        wh_delta = K.switch(object_mask, wh_delta, K.zeros_like(wh_delta))
        box_delta = K.concatenate([xy_delta, wh_delta], axis=-1)
        box_delta_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                     size=1,
                                     dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4],
                                       object_mask_bool[b, ..., 0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(
                b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        _, ignore_mask = K.control_flow_ops.while_loop(lambda b, *args: b < m,
                                                       loop_body,
                                                       [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        box_loss = object_mask * K.square(box_delta * box_delta_scale)
        confidence_loss = object_mask * K.square(1-pred_confidence) + \
            (1-object_mask) * K.square(0-pred_confidence) * ignore_mask
        class_loss = object_mask * K.square(true_class_probs -
                                            pred_class_probs)
        loss += K.sum(box_loss) + K.sum(confidence_loss) + K.sum(class_loss)
    return loss / K.cast(m, K.dtype(loss))
示例#22
0
def yolo_loss(args, anchors, num_classes, ignore_thresh=.5):
    """Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    """
    num_layers = 1
    yolo_outputs = args[:num_layers]
    y_true = args[num_layers:]
    g_y_true = y_true
    input_shape = K.cast(
        K.shape(yolo_outputs[0])[1:3] * grid_size_multiplier,
        K.dtype(y_true[0]))
    grid_shapes = [
        K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0]))
        for l in range(num_layers)
    ]
    loss = 0

    m = K.shape(yolo_outputs[0])[0]  # batch size, tensor
    mf = K.cast(m, K.dtype(yolo_outputs[0]))
    for layer in range(num_layers):
        object_mask = y_true[layer][..., 4:5]
        vertices_mask = y_true[layer][..., 5 + num_classes + 2:5 +
                                      num_classes + NUM_ANGLES3:3]
        true_class_probs = y_true[layer][..., 5:5 + num_classes]

        grid, raw_pred, pred_xy, pred_wh, pol_cnf = yolo_head(
            yolo_outputs[layer],
            anchors[anchor_mask[layer]],
            num_classes,
            input_shape,
            calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])
        raw_true_xy = y_true[layer][..., :2] * grid_shapes[layer][
            ..., ::-1] - grid
        raw_true_polygon0 = y_true[layer][..., 5 + num_classes:5 +
                                          num_classes + NUM_ANGLES3]

        raw_true_wh = K.log(y_true[layer][..., 2:4] /
                            anchors[anchor_mask[layer]] *
                            input_shape[..., ::-1])
        raw_true_wh = K.switch(object_mask, raw_true_wh,
                               K.zeros_like(raw_true_wh))  # avoid log(0)=-inf

        raw_true_polygon_x = raw_true_polygon0[..., ::3]
        raw_true_polygon_y = raw_true_polygon0[..., 1::3]

        dx = K.square(anchors[anchor_mask[layer]][..., 0:1] / 2)
        dy = K.square(anchors[anchor_mask[layer]][..., 1:2] / 2)
        d = K.cast(K.sqrt(dx + dy), K.dtype(raw_true_polygon_x))

        diagonal = K.sqrt(
            K.pow(input_shape[..., ::-1][0], 2) +
            K.pow(input_shape[..., ::-1][1], 2))
        raw_true_polygon_x = K.log(raw_true_polygon_x / d * diagonal)
        raw_true_polygon_x = K.switch(vertices_mask, raw_true_polygon_x,
                                      K.zeros_like(raw_true_polygon_x))
        box_loss_scale = 2 - y_true[layer][..., 2:3] * y_true[layer][..., 3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                     size=1,
                                     dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[layer][b, ..., 0:4],
                                       object_mask_bool[b, ..., 0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(
                b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        _, ignore_mask = tf.while_loop(lambda b, *args: b < m, loop_body,
                                       [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # K.binary_crossentropy is helpful to avoid exp overflow.
        xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(
            raw_true_xy, raw_pred[..., 0:2], from_logits=True)
        wh_loss = object_mask * box_loss_scale * 0.5 * K.square(
            raw_true_wh - raw_pred[..., 2:4])
        confidence_loss = object_mask * K.binary_crossentropy(
            object_mask, raw_pred[..., 4:5], from_logits=True
        ) + (1 - object_mask) * K.binary_crossentropy(
            object_mask, raw_pred[..., 4:5], from_logits=True) * ignore_mask
        class_loss = object_mask * K.binary_crossentropy(
            true_class_probs,
            raw_pred[..., 5:5 + num_classes],
            from_logits=True)
        polygon_loss_x = object_mask * vertices_mask * box_loss_scale * 0.5 * K.square(
            raw_true_polygon_x -
            raw_pred[..., 5 + num_classes:5 + num_classes + NUM_ANGLES3:3])
        polygon_loss_y = object_mask * vertices_mask * box_loss_scale * K.binary_crossentropy(
            raw_true_polygon_y,
            raw_pred[..., 5 + num_classes + 1:5 + num_classes + NUM_ANGLES3:3],
            from_logits=True)
        vertices_confidence_loss = object_mask * K.binary_crossentropy(
            vertices_mask,
            raw_pred[..., 5 + num_classes + 2:5 + num_classes + NUM_ANGLES3:3],
            from_logits=True)

        xy_loss = K.sum(xy_loss) / mf
        wh_loss = K.sum(wh_loss) / mf
        class_loss = K.sum(class_loss) / mf
        confidence_loss = K.sum(confidence_loss) / mf
        vertices_confidence_loss = K.sum(vertices_confidence_loss) / mf
        polygon_loss = K.sum(polygon_loss_x) / mf + K.sum(polygon_loss_y) / mf

        diou_loss = K.sum(
            object_mask * box_loss_scale *
            (1 - box_diou(pred_box, y_true[layer][..., 0:4]))) / mf

        loss += (xy_loss + wh_loss + confidence_loss + class_loss +
                 0.2 * polygon_loss + 0.2 * vertices_confidence_loss) / (
                     K.sum(object_mask) + 1) * mf
    return loss
示例#23
0
 def call(self, inputs, **kwargs):
     return inputs[0] * K.expand_dims(inputs[1])
示例#24
0
def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):
    '''Return yolo_loss tensor

    Parameters
    ----------
    yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body
    y_true: list of array, the output of preprocess_true_boxes
    anchors: array, shape=(N, 2), wh
    num_classes: integer
    ignore_thresh: float, the iou threshold whether to ignore object confidence loss

    Returns
    -------
    loss: tensor, shape=(1,)

    '''
    num_layers = len(anchors) // 3  # default setting
    yolo_outputs = args[:num_layers]
    y_true = args[num_layers:]
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]
                   ] if num_layers == 3 else [[3, 4, 5], [1, 2, 3]]
    input_shape = K.cast(
        K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))
    grid_shapes = [
        K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0]))
        for l in range(num_layers)
    ]
    loss = 0
    m = K.shape(yolo_outputs[0])[0]  # batch size, tensor
    mf = K.cast(m, K.dtype(yolo_outputs[0]))

    for l in range(num_layers):
        object_mask = y_true[l][..., 4:5]
        true_class_probs = y_true[l][..., 5:]

        grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],
                                                     anchors[anchor_mask[l]],
                                                     num_classes,
                                                     input_shape,
                                                     calc_loss=True)
        pred_box = K.concatenate([pred_xy, pred_wh])

        # Darknet raw box to calculate loss.
        raw_true_xy = y_true[l][..., :2] * grid_shapes[l][::-1] - grid
        raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] *
                            input_shape[::-1])
        raw_true_wh = K.switch(object_mask, raw_true_wh,
                               K.zeros_like(raw_true_wh))  # avoid log(0)=-inf
        box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]

        # Find ignore mask, iterate over each of batch.
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]),
                                     size=1,
                                     dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        def loop_body(b, ignore_mask):
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4],
                                       object_mask_bool[b, ..., 0])
            iou = box_iou(pred_box[b], true_box)
            best_iou = K.max(iou, axis=-1)
            ignore_mask = ignore_mask.write(
                b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        _, ignore_mask = K.control_flow_ops.while_loop(lambda b, *args: b < m,
                                                       loop_body,
                                                       [0, ignore_mask])
        ignore_mask = ignore_mask.stack()
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # K.binary_crossentropy is helpful to avoid exp overflow.
        xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(
            raw_true_xy, raw_pred[..., 0:2], from_logits=True)
        wh_loss = object_mask * box_loss_scale * 0.5 * K.square(
            raw_true_wh - raw_pred[..., 2:4])
        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \
            (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask
        class_loss = object_mask * K.binary_crossentropy(
            true_class_probs, raw_pred[..., 5:], from_logits=True)

        xy_loss = K.sum(xy_loss) / mf
        wh_loss = K.sum(wh_loss) / mf
        confidence_loss = K.sum(confidence_loss) / mf
        class_loss = K.sum(class_loss) / mf
        loss += xy_loss + wh_loss + confidence_loss + class_loss
        if print_loss:
            loss = tf.Print(loss, [
                loss, xy_loss, wh_loss, confidence_loss, class_loss,
                K.sum(ignore_mask)
            ],
                            message='loss: ')
    return loss