示例#1
0
def adversarial_training_WGAN(arguments,
                              train,
                              data_cols,
                              label_cols=[],
                              seed=0,
                              starting_step=0):

    [
        rand_dim, nb_steps, batch_size, k_d, k_g, critic_pre_train_steps,
        log_interval, learning_rate, base_n_count, data_dir,
        generator_model_path, discriminator_model_path, loss_pickle_path, show
    ] = arguments

    np.random.seed(seed)  # set random seed

    data_dim = len(data_cols)
    print('data_dim: ', data_dim)
    print('data_cols: ', data_cols)

    label_dim = 0
    with_class = False
    if len(label_cols) > 0:
        with_class = True
        label_dim = len(label_cols)
        print('label_dim: ', label_dim)
        print('label_cols: ', label_cols)

    # define network models

    K.set_learning_phase(1)  # 1 = train

    if with_class:
        cache_prefix = 'WCGAN'
        generator_model, discriminator_model, combined_model = define_models_CGAN(
            rand_dim, data_dim, label_dim, base_n_count, type='Wasserstein')
    else:
        cache_prefix = 'WGAN'
        generator_model, discriminator_model, combined_model = define_models_GAN(
            rand_dim, data_dim, base_n_count, type='Wasserstein')

    # construct computation graph for calculating the gradient penalty (improved WGAN) and training the discriminator

    _z = tf.placeholder(tf.float32, shape=(batch_size, rand_dim))

    _labels = None
    if with_class:
        _x = tf.placeholder(tf.float32,
                            shape=(batch_size, data_dim + label_dim))
        _labels = tf.placeholder(tf.float32,
                                 shape=(batch_size,
                                        label_dim))  # updated for class
        _g_z = generator_model(inputs=[_z, _labels])  # updated for class
    else:
        _x = tf.placeholder(tf.float32, shape=(batch_size, data_dim))
        _g_z = generator_model(_z)

    epsilon = tf.placeholder(tf.float32, shape=(batch_size, 1))

    x_hat = epsilon * _x + (1.0 - epsilon) * _g_z
    gradients = tf.gradients(discriminator_model(x_hat), [x_hat])
    _gradient_penalty = 10.0 * tf.square(tf.norm(gradients[0], ord=2) - 1.0)

    # calculate discriminator's loss
    _disc_loss_generated = em_loss(tf.ones(batch_size),
                                   discriminator_model(_g_z))
    _disc_loss_real = em_loss(tf.ones(batch_size), discriminator_model(_x))
    _disc_loss = _disc_loss_generated - _disc_loss_real + _gradient_penalty

    # update f by taking an SGD step on mini-batch loss LD(f)
    disc_optimizer = tf.train.AdamOptimizer(
        learning_rate=learning_rate, beta1=0.5,
        beta2=0.9).minimize(_disc_loss,
                            var_list=discriminator_model.trainable_weights)

    sess = K.get_session()

    # compile models

    adam = optimizers.Adam(lr=learning_rate, beta_1=0.5, beta_2=0.9)

    discriminator_model.trainable = False
    combined_model.compile(optimizer=adam, loss=[em_loss])

    combined_loss, disc_loss_generated, disc_loss_real, xgb_losses = [], [], [], []

    model_components = [
        cache_prefix, with_class, starting_step, train, data_cols, data_dim,
        label_cols, label_dim, generator_model, discriminator_model,
        combined_model, rand_dim, nb_steps, batch_size, k_d, k_g,
        critic_pre_train_steps, log_interval, learning_rate, base_n_count,
        data_dir, generator_model_path, discriminator_model_path, sess, _z, _x,
        _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
        _disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
        show, combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
    ]

    if show:
        print(generator_model.summary())
        print(discriminator_model.summary())
        print(combined_model.summary())

    if loss_pickle_path:
        print('Loading loss pickles')
        [combined_loss, disc_loss_generated, disc_loss_real,
         xgb_losses] = pickle.load(open(loss_pickle_path, 'rb'))
    if generator_model_path:
        print('Loading generator model')
        generator_model.load_weights(generator_model_path)  #, by_name=True)
    if discriminator_model_path:
        print('Loading discriminator model')
        discriminator_model.load_weights(
            discriminator_model_path)  #, by_name=True)
    else:
        print('pre-training the critic...')
        K.set_learning_phase(1)  # 1 = train
        for i in range(critic_pre_train_steps):
            if i % 20 == 0:
                print('Step: {} of {} critic pre-training.'.format(
                    i, critic_pre_train_steps))
            loss = train_discriminator_step(model_components, seed=i)
        print('Last batch of critic pre-training disc_loss: {}.'.format(loss))

    model_components = [
        cache_prefix, with_class, starting_step, train, data_cols, data_dim,
        label_cols, label_dim, generator_model, discriminator_model,
        combined_model, rand_dim, nb_steps, batch_size, k_d, k_g,
        critic_pre_train_steps, log_interval, learning_rate, base_n_count,
        data_dir, generator_model_path, discriminator_model_path, sess, _z, _x,
        _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
        _disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
        show, combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
    ]

    [combined_loss, disc_loss_generated, disc_loss_real,
     xgb_losses] = training_steps_WGAN(model_components)
示例#2
0
def get_model(framework, model_variant):
    """
    Load the desired EfficientPose model variant using the requested deep learning framework.
    
    Args:
        framework: string
            Deep learning framework to use (Keras, TensorFlow, TensorFlow Lite or PyTorch)
        model_variant: string
            EfficientPose model to utilize (RT, I, II, III, IV, RT_Lite, I_Lite or II_Lite)
            
    Returns:
        Initialized EfficientPose model and corresponding resolution.
    """

    # Keras
    if framework in ['keras', 'k']:
        from tensorflow.keras.backend import set_learning_phase
        from tensorflow.keras.models import load_model
        set_learning_phase(0)
        model = load_model(join(
            'models', 'keras',
            'EfficientPose{0}.h5'.format(model_variant.upper())),
                           custom_objects={
                               'BilinearWeights':
                               helpers.keras_BilinearWeights,
                               'Swish': helpers.Swish(helpers.eswish),
                               'eswish': helpers.eswish,
                               'swish1': helpers.swish1
                           })

    # TensorFlow
    elif framework in ['tensorflow', 'tf']:
        from tensorflow.python.platform.gfile import FastGFile
        from tensorflow.compat.v1 import GraphDef
        from tensorflow.compat.v1.keras.backend import get_session
        from tensorflow import import_graph_def
        f = FastGFile(
            join('models', 'tensorflow',
                 'EfficientPose{0}.pb'.format(model_variant.upper())), 'rb')
        graph_def = GraphDef()
        graph_def.ParseFromString(f.read())
        f.close()
        model = get_session()
        model.graph.as_default()
        import_graph_def(graph_def)

    # TensorFlow Lite
    elif framework in ['tensorflowlite', 'tflite']:
        from tensorflow import lite
        model = lite.Interpreter(model_path=join(
            'models', 'tflite', 'EfficientPose{0}.tflite'.format(
                model_variant.upper())))
        model.allocate_tensors()

    # PyTorch
    elif framework in ['pytorch', 'torch']:
        from imp import load_source
        from torch import load, quantization, backends
        try:
            MainModel = load_source(
                'MainModel',
                join('models', 'pytorch',
                     'EfficientPose{0}.py'.format(model_variant.upper())))
        except:
            print(
                '\n##########################################################################################################'
            )
            print(
                'Desired model "EfficientPose{0}Lite" not available in PyTorch. Please select among "RT", "I", "II", "III" or "IV".'
                .format(model_variant.split('lite')[0].upper()))
            print(
                '##########################################################################################################\n'
            )
            return False, False
        model = load(
            join('models', 'pytorch',
                 'EfficientPose{0}'.format(model_variant.upper())))
        model.eval()
        qconfig = quantization.get_default_qconfig('qnnpack')
        backends.quantized.engine = 'qnnpack'

    return model, {
        'rt': 224,
        'i': 256,
        'ii': 368,
        'iii': 480,
        'iv': 600,
        'rt_lite': 224,
        'i_lite': 256,
        'ii_lite': 368
    }[model_variant]
示例#3
0
def calculate_losses_from_generator(tg,
                                    model,
                                    num_steps=None,
                                    stepsize=1,
                                    verbose=0):
    """
    Keras evaluate_generator only returns a scalar loss (mean) while predict_generator only returns the predictions but not the real labels
    TODO Make it batch size independent

    Parameters
    ----------
    tg : object
        Data generator
    model : object
        Keras model
    num_steps : int, optional
        How many steps should be evaluated, by default None (runs through full experiment)
    stepsize : int, optional
        Determines how many samples will be evaluated. 1 -> N samples evaluated, 
        2 -> N/2 samples evaluated, etc..., by default 1
    verbose : int, optional
        Verbosity level

    Returns
    -------
    losses : (N,1) array_like
        Loss between predicted and ground truth observation
    predictions : dict
        Dictionary with predictions for each behaviour, each item in dict has size (N, Z) with Z the dimensions of the sample (e.g. Z_position=2, Z_speed=1, ...)
    indices : (N,1) array_like
        Indices which were evaluated, important when taking stepsize unequal to 1
    """
    # X.) Parse inputs
    if num_steps is None:
        num_steps = len(tg)

    # 1.) Make a copy and adjust attributes
    tmp_dict = tg.__dict__.copy()
    if tg.batch_size != 1:
        tg.batch_size = 1
        tg.random_batches = False
        tg.shuffle = False
        tg.sample_size = tg.model_timesteps * tg.batch_size

    # 2.) Get output tensors
    sess = K.get_session()
    (_, test_out) = tg.__getitem__(0)
    real_tensor, calc_tensors = K.placeholder(), []
    for output_index in range(0, len(test_out)):
        prediction_tensor = model.outputs[output_index]
        loss_tensor = model.loss_functions[output_index].fn(
            real_tensor, prediction_tensor)
        calc_tensors.append((prediction_tensor, loss_tensor))

    # 3.) Predict
    losses, predictions, indices = [], [], []
    for i in range(0, num_steps, stepsize):
        (in_tg, out_tg) = tg.__getitem__(i)
        indices.append(tg.cv_indices[i])
        loss, prediction = [], []
        for o in range(0, len(out_tg)):
            evaluated = sess.run(calc_tensors[o],
                                 feed_dict={
                                     model.input: in_tg,
                                     real_tensor: out_tg[o]
                                 })
            prediction.append(evaluated[0][0, ...])
            loss.append(evaluated[1][0, ...])  # Get rid of batch dimensions
        predictions.append(prediction)
        losses.append(loss)
        if verbose > 0 and not i % 50:
            print('{} / {}'.format(i, num_steps), end='\r')
    if verbose > 0:
        print('Performed {} gradient steps'.format(num_steps // stepsize))
    losses, predictions, indices = np.array(losses), swap_listaxes(
        predictions), np.array(indices)
    tg.__dict__.update(tmp_dict)

    return losses, predictions, indices
示例#4
0
def test_adv(images, labels, batch_size, model, adv_model, daug_params, 
             attack_params):
    """
    Tests the performance of a model on adversarial images. The adversarial
    images are computed according to the attack specified in the arguments.

    Parameters
    ----------
    images : dask array
        The set of images

    labels : dask array
        The ground truth labels

    batch_size : int
        Batch size

    model : Keras Model
        The model

    adv_model : Keras Model
        The model used to generate adversarial examples

    daug_params : dict
        Dictionary of data augmentation parameters

    attack_params : dict
        Dictionary of the attack parameters

    Returns
    -------
    results_dict : dict
        Dictionary containing some performance metrics
    """

    # Get session
    sess = K.get_session()
    
    # Initialize adversarial attack
    attack, attack_params_cleverhans, bs = init_attack(
            adv_model, attack_params, sess)
    if bs:
        batch_size = bs

    n_images = images.shape[0]
    n_classes = labels.shape[1]
    n_batches_per_epoch = int(np.ceil(float(n_images) / batch_size))

    # Create batch generator
    image_gen = get_generator(images, **daug_params)
    batch_gen = batch_generator(image_gen, images, labels, batch_size, 
                                aug_per_im=1, shuffle=False)

    # Define input TF placeholder
    if daug_params['crop_size']:
        image_shape = daug_params['crop_size']
    else:
        image_shape = images.shape[1:]
    x = tf.placeholder(K.floatx(), shape=(bs,) + tuple(image_shape))
    y = tf.placeholder(K.floatx(), shape=(bs,) + (n_classes,))

    # Define adversarial predictions symbolically
    x_adv = attack.generate(x, **attack_params_cleverhans)
    x_adv = tf.stop_gradient(x_adv)
    predictions_adv = model(x_adv)

    # Define accuracy and mean squared error symbolically
    correct_preds = tf.equal(tf.argmax(y, axis=-1), 
                             tf.argmax(predictions_adv, axis=-1))
    acc_value = tf.reduce_mean(tf.to_float(correct_preds))
    mse_value = tf.reduce_mean(tf.square(tf.subtract(x, x_adv)))

    # Init results variables
    accuracy = 0.0
    mse = 0.0

    with sess.as_default():
        init = 0
        for _ in tqdm(range(n_batches_per_epoch)):
            batch = next(batch_gen())
            this_batch_size = batch[0].shape[0]

            # Evaluate accuracy
            if isinstance(batch[1], (list, )):
                yy = batch[1][0]
            else:
                yy = batch[1]

            # Evaluate accuracy and MSE
            batch_acc = acc_value.eval(feed_dict={x: batch[0], y: yy,
                                                  K.learning_phase(): 0})
            accuracy += (this_batch_size * batch_acc)
            batch_mse = mse_value.eval(feed_dict={x: batch[0],
                                       K.learning_phase(): 0})
            mse += (this_batch_size * batch_mse)

            init += this_batch_size

    accuracy /= n_images
    mse /= n_images

    results_dict = {'mean_acc': accuracy,
                    'mean_mse': mse}

    return results_dict
示例#5
0
  input_ids = [[3, 6, 5, 8, 9]]
  input_mask = [[1, 1, 1, 1, 1]]
  token_type_ids = [[0, 0, 0, 0, 0]]
  #masked_lm_positions = [[2, 4]]
  #masked_lm_weights = [[1.0, 1.0]]
  #masked_lm_ids = [[15, 20]]
  masked_lm_ids = [[3, 6, 5, 8, 9]]

  input_ids[0].extend([0 for _ in range(64 - len(input_ids[0]))])
  input_mask[0].extend([0 for _ in range(64 - len(input_mask[0]))])
  token_type_ids[0].extend([0 for _ in range(64 - len(token_type_ids[0]))])
  '''

    print('Start unit testing : BERTWrapper')

    sess = K.get_session()
    init = tf.group(tf.global_variables_initializer(),
                    tf.local_variables_initializer())
    sess.run(init)

    test_data = [
        ['Hello', 'World'],
        ['Hello', 'World'],
        ['Hello', 'World'],
        ['Hello', 'World'],
    ]
    input_vals = itokens.encode(test_data, max_length=16)
    output_vals = otokens.encode(test_data, max_length=16)
    print(input_vals)
    print(output_vals)
def compute_ig_within_GRU(seq2seq,
                          decoder_states_container,
                          decoder_inputs_container,
                          real_h,
                          target_gate="z",
                          target_class=[0],
                          reference=False,
                          k=32):
    """
	Compute ig within GRU for several gates.
	Arguments:
		decoder_states_container, decoder_inputs_container: For only one time step, the inputs of decoder GRU cell.
		target_gate: A list of {"h", "r", "z"}.
		target_class: A list of int.
	"""
    assert target_gate == "z" or target_gate == "r" or target_gate == "h", "No this gate."
    print("\nCompute on %s gate." % target_gate)
    weight = seq2seq.decoder_model.get_layer("decoder_gru").get_weights()
    emb_layer_model = Model(
        inputs=seq2seq.decoder_model.get_layer('decoder_emb').get_input_at(-1),
        outputs=seq2seq.decoder_model.get_layer('decoder_emb').output)
    inputs = np.squeeze(emb_layer_model.predict(decoder_inputs_container,
                                                verbose=0),
                        axis=1)
    states = np.copy(decoder_states_container)
    h_tm1, h, z, r, hh, x_h, split_recurrent_h = gruig.get_GRU_components(
        inputs, states, weight)
    weight_array = np.concatenate(
        [weight[0], weight[1],
         np.expand_dims(weight[2], axis=0)], axis=0)
    units = seq2seq.units
    if target_gate == "h":
        gate_model = gruig.build_GRU_with_h_gate_model(seq2seq)
        gate_model.get_layer("wx_h").set_weights(
            [weight[0][:, units * 2:], weight[2][units * 2:]])
        gate_model.get_layer("uh_h").set_weights([weight[1][:, units * 2:]])
        y = gate_model.predict([h_tm1, inputs, z, r], steps=1)
        feed_dict = {
            gate_model.input[1]: inputs,
            gate_model.input[2]: z,
            gate_model.input[3]: r,
        }
        real = real_h
    elif target_gate == "z":
        gate_model = gruig.build_GRU_with_z_gate_model(seq2seq, weight_array)
        y = gate_model.predict([h_tm1, inputs, r, hh], steps=1)
        feed_dict = {
            gate_model.input[1]: inputs,
            gate_model.input[2]: r,
            gate_model.input[3]: hh
        }
        real = y
    elif target_gate == "r":
        gate_model = gruig.build_GRU_with_r_gate_model(seq2seq, weight_array)
        y = gate_model.predict([h_tm1, inputs, z, x_h, split_recurrent_h],
                               steps=1)
        feed_dict = {
            gate_model.input[1]: inputs,
            gate_model.input[2]: z,
            gate_model.input[3]: x_h,
            gate_model.input[4]: split_recurrent_h
        }
        real = y
    assert np.mean(
        np.abs(y -
               real)) < 1e-6, "Wrong computation for error = %.8f" % np.mean(
                   np.abs(y - real))
    print("delta =", np.mean(np.abs(y - real)))
    #assert np.mean(np.abs(y - h)) < 1e-6, "Wrong computation for error = %.8f" % np.mean(np.abs(y - h))

    interpolate, num_steps, step_size = linearly_interpolate(
        decoder_states_container)  # (50, N, 10), int, (N, 10)
    result = np.zeros(decoder_states_container.shape)  # (N, 256),
    total_result = np.zeros(decoder_states_container.shape)
    sess = K.get_session()

    for class_ in target_class:
        print("Class index =", class_)
        gradient = gradients(gate_model.output[:, class_], gate_model.input[0])
        result = np.zeros(decoder_states_container.shape)
        for i in range(num_steps):
            feed_dict[gate_model.input[0]] = interpolate[i]
            x = sess.run(gradient[0], feed_dict=feed_dict)
            result += x
        result = np.multiply(result, step_size)
        """if target_gate == "h":
			score = np.abs(np.mean(result, axis=0))
			print("selected =", list(np.argsort(score)[::-1][:k]))
			print("other =", list(np.argsort(score)[::-1][k:]))
			print(np.sort(score)[::-1][:4])	"""
        total_result += result
    total_result /= float(len(target_class))
    score = np.abs(np.mean(total_result, axis=0))
    print("(total) selected =", list(np.argsort(score)[::-1][:k]))
    #print("other =", list(np.argsort(score)[::-1][k:]))
    print(np.sort(score)[::-1][:4])
    return score
示例#7
0
def predict(predict_var,
            x_unlabeled,
            inputs,
            y_true,
            batch_sizes,
            x_labeled=None,
            y_labeled=None):
  """Evaluates predict_var, batchwise, over all points in x_unlabeled and x_labeled.

  Args:
    predict_var:        list of tensors to evaluate and return
    x_unlabeled:        unlabeled input data
    inputs:             dictionary containing input_types and input_placeholders
      as key, value pairs, respectively
    y_true:             true labels tensorflow placeholder
    batch_sizes:        dictionary containing input_types and batch_sizes as
      key, value pairs, respectively
    x_labeled:          labeled input data
    y_labeled:          labeled input labels

  Returns:
    a list of length n containing the result of all tensors
    in return_var, where n = len(x_unlabeled) + len(x_labeled)
  """
  x_unlabeled, x_labeled, y_labeled = check_inputs(x_unlabeled, x_labeled,
                                                   y_labeled, y_true)

  # combined data
  x = np.concatenate((x_unlabeled, x_labeled), 0)
  # get shape of y_true
  y_shape = y_true.get_shape()[1:K.ndim(y_true)].as_list()

  # calculate batches for predict loop
  unlabeled_batch_size = batch_sizes.get('Unlabeled', 0)
  labeled_batch_size = batch_sizes.get('Labeled', 0)
  if 'Labeled' in batch_sizes and 'Unlabeled' in batch_sizes:
    assert unlabeled_batch_size == labeled_batch_size
  batch_size = min(len(x), max(unlabeled_batch_size, labeled_batch_size))
  batches = make_batches(len(x), batch_size)

  y_preds = []
  # predict over all points
  for _, (batch_start, batch_end) in enumerate(batches):
    feed_dict = {K.learning_phase(): 0}

    # feed corresponding input for each input_type
    for input_type, input_placeholder in inputs.items():
      if input_type == 'Unlabeled':
        feed_dict[input_placeholder] = x[batch_start:batch_end]
      elif input_type == 'Labeled':
        if x_labeled:
          batch_ids = np.random.choice(
              len(x_labeled),
              size=min(batch_sizes[input_type], len(x_labeled)),
              replace=False)
          feed_dict[input_placeholder] = x_labeled[batch_ids]
          feed_dict[y_true] = y_labeled[batch_ids]
        else:
          # we have no labeled points, so feed an empty array
          feed_dict[input_placeholder] = x[0:0]
          feed_dict[y_true] = np.empty([0] + y_shape)

    # evaluate the batch
    y_pred_batch = np.asarray(K.get_session().run(
        predict_var, feed_dict=feed_dict))
    y_preds.append(y_pred_batch)

  if y_preds[0].shape:
    return np.concatenate(y_preds)
  else:
    return np.sum(y_preds)
示例#8
0
def train_step(return_vars,
               updates,
               x_unlabeled,
               inputs,
               y_true,
               batch_sizes,
               x_labeled=None,
               y_labeled=None,
               batches_per_epoch=100):
  """Performs one training step.

   Evaluates the tensors in return_vars and updates, then returns the values of
   the tensors in return_vars.

  Args:
    return_vars: list of tensors to evaluate and return
    updates: list of tensors to evaluate only
    x_unlabeled: unlabeled input data
    inputs: dictionary containing input_types and input_placeholders as key,
      value pairs, respectively
    y_true: true labels placeholder
    batch_sizes: dictionary containing input_types and batch_sizes as key, value
      pairs, respectively
    x_labeled: labeled input data
    y_labeled: labeled input labels
    batches_per_epoch: parameter updates per epoch*

  Returns:
    the evaluated result of all tensors in return_vars, summed
    across all epochs

  *note: the term epoch is used loosely here, it does not necessarily
         refer to one iteration over the entire dataset. instead, it
         is just batches_per_epoch parameter updates.
  """
  x_unlabeled, x_labeled, y_labeled = check_inputs(x_unlabeled, x_labeled,
                                                   y_labeled, y_true)

  # combine data
  x = np.concatenate((x_unlabeled, x_labeled), 0)

  # get shape of y_true
  y_shape = y_true.get_shape()[1:K.ndim(y_true)].as_list()

  return_vars_ = np.zeros(shape=(len(return_vars)))
  # train batches_per_epoch batches
  for _ in range(0, batches_per_epoch):
    feed_dict = {K.learning_phase(): 1}

    # feed corresponding input for each input_type
    for input_type, input_placeholder in inputs.items():
      if input_type == 'Labeled':
        if x_labeled:
          batch_ids = np.random.choice(
              len(x_labeled),
              size=min(batch_sizes[input_type], len(x_labeled)),
              replace=False)
          feed_dict[input_placeholder] = x_labeled[batch_ids]
          feed_dict[y_true] = y_labeled[batch_ids]
        else:
          # we have no labeled points, so feed an empty array
          feed_dict[input_placeholder] = x[0:0]
          feed_dict[y_true] = np.empty([0] + y_shape)
      elif input_type == 'Unlabeled':
        if x_unlabeled:
          batch_ids = np.random.choice(
              len(x_unlabeled), size=batch_sizes[input_type], replace=False)
          feed_dict[input_placeholder] = x_unlabeled[batch_ids]
        else:
          # we have no unlabeled points, so feed an empty array
          feed_dict[input_placeholder] = x[0:0]

    all_vars = return_vars + updates
    return_vars_ += np.asarray(K.get_session().run(
        all_vars, feed_dict=feed_dict)[:len(return_vars)])

  return return_vars_
示例#9
0
    def load_preaggregated_data(self):
        # Return objects of this function
        X = None
        Y = None
        X_valid = None
        Y_valid = None

        # Load pre-aggregated training dataset
        tfrecord_file_list = os.listdir(self.preaggregated_data_path)
        tfrecord_file_list = [
            os.path.join(self.preaggregated_data_path, k)
            for k in tfrecord_file_list
        ]
        print('Pre-aggregated file list = ' + str(tfrecord_file_list))
        reader = tf.TFRecordReader()
        key, examples = reader.read(
            tf.train.string_input_producer(
                tfrecord_file_list,
                num_epochs=1))  # Only generate all data once

        name_to_features = {
            "input_ids": tf.io.FixedLenFeature([self.max_seq_length],
                                               tf.int64),
            "input_mask": tf.io.FixedLenFeature([self.max_seq_length],
                                                tf.int64),
            "segment_ids": tf.io.FixedLenFeature([self.max_seq_length],
                                                 tf.int64),
        }

        parsed_example = tf.parse_single_example(examples, name_to_features)
        parsed_example_values = list(parsed_example.values())

        # Reuse Keras Session
        sess = K.get_session()

        # Just read all data into array for now.
        # TODO: Implment generator to support very large dataset that is not fit into RAM
        all_data = []
        sess.run(tf.initialize_local_variables())
        tf.train.start_queue_runners(sess=sess)
        try:
            while True:
                data = sess.run(parsed_example_values)
                for i in range(len(data)):
                    if len(all_data) <= i:
                        all_data.append([])
                    all_data[i].append(data[i])
        except tf.errors.OutOfRangeError:
            pass
        all_data = [np.array(a) for a in all_data]
        X = all_data
        Y = all_data[0]  # Y is only 'input_ids' tensor
        K.clear_session()  # sess object is not valid anymore after this

        # Load pre-aggregated validation dataset
        tfrecord_file_list = os.listdir(
            self.preaggregated_validation_data_path)
        tfrecord_file_list = [
            os.path.join(self.preaggregated_validation_data_path, k)
            for k in tfrecord_file_list
        ]
        print('Pre-aggregated file list = ' + str(tfrecord_file_list))
        reader = tf.TFRecordReader()
        key, examples = reader.read(
            tf.train.string_input_producer(
                tfrecord_file_list,
                num_epochs=1))  # Only generate all data once

        name_to_features = {
            "input_ids": tf.io.FixedLenFeature([self.max_seq_length],
                                               tf.int64),
            "input_mask": tf.io.FixedLenFeature([self.max_seq_length],
                                                tf.int64),
            "segment_ids": tf.io.FixedLenFeature([self.max_seq_length],
                                                 tf.int64),
        }

        parsed_example = tf.parse_single_example(examples, name_to_features)
        parsed_example_values = list(parsed_example.values())

        # Reuse Keras Session
        sess = K.get_session()

        # Just read all data into array for now.
        # TODO: Implment generator to support very large dataset that is not fit into RAM
        all_data = []
        sess.run(tf.initialize_local_variables())
        tf.train.start_queue_runners(sess=sess)
        try:
            while True:
                data = sess.run(parsed_example_values)
                for i in range(len(data)):
                    if len(all_data) <= i:
                        all_data.append([])
                    all_data[i].append(data[i])
        except tf.errors.OutOfRangeError:
            pass
        all_data = [np.array(a) for a in all_data]
        X_valid = all_data
        Y_valid = all_data[0]  # Y is only 'input_ids' tensor
        K.clear_session()  # sess object is not valid anymore after this

        #print(len(X_valid))
        #print(len(Y_valid))

        return (X, Y, X_valid, Y_valid)
示例#10
0
def main(args):
    # If output_model path is relative and in cwd, make it absolute from root
    output_model = FLAGS.output_model
    if str(Path(output_model).parent) == '.':
        output_model = str((Path.cwd() / output_model))

    output_fld = Path(output_model).parent
    output_model_name = Path(output_model).name
    output_model_stem = Path(output_model).stem
    output_model_pbtxt_name = output_model_stem + '.pbtxt'

    # Create output directory if it does not exist
    Path(output_model).parent.mkdir(parents=True, exist_ok=True)

    if FLAGS.channels_first:
        K.set_image_data_format('channels_first')
    else:
        K.set_image_data_format('channels_last')

    custom_object_dict = get_custom_objects()

    model = load_input_model(FLAGS.input_model,
                             FLAGS.input_model_json,
                             FLAGS.input_model_yaml,
                             custom_objects=custom_object_dict)

    # TODO(amirabdi): Support networks with multiple inputs
    orig_output_node_names = [node.op.name for node in model.outputs]
    if FLAGS.output_nodes_prefix:
        num_output = len(orig_output_node_names)
        pred = [None] * num_output
        converted_output_node_names = [None] * num_output

        # Create dummy tf nodes to rename output
        for i in range(num_output):
            converted_output_node_names[i] = '{}{}'.format(
                FLAGS.output_nodes_prefix, i)
            pred[i] = tf.identity(model.outputs[i],
                                  name=converted_output_node_names[i])
    else:
        converted_output_node_names = orig_output_node_names
    logging.info('Converted output node names are: %s',
                 str(converted_output_node_names))

    sess = K.get_session()
    if FLAGS.output_meta_ckpt:
        saver = tf.train.Saver()
        saver.save(sess, str(output_fld / output_model_stem))

    if FLAGS.save_graph_def:
        tf.train.write_graph(sess.graph.as_graph_def(),
                             str(output_fld),
                             output_model_pbtxt_name,
                             as_text=True)
        logging.info('Saved the graph definition in ascii format at %s',
                     str(Path(output_fld) / output_model_pbtxt_name))

    if FLAGS.quantize:
        from tensorflow.tools.graph_transforms import TransformGraph
        transforms = ["quantize_weights", "quantize_nodes"]
        transformed_graph_def = TransformGraph(sess.graph.as_graph_def(), [],
                                               converted_output_node_names,
                                               transforms)
        constant_graph = graph_util.convert_variables_to_constants(
            sess, transformed_graph_def, converted_output_node_names)
    else:
        constant_graph = graph_util.convert_variables_to_constants(
            sess, sess.graph.as_graph_def(), converted_output_node_names)

    graph_io.write_graph(constant_graph,
                         str(output_fld),
                         output_model_name,
                         as_text=False)
    logging.info('Saved the freezed graph at %s',
                 str(Path(output_fld) / output_model_name))
示例#11
0
            for node in input_graph_def.node:
                node.device = ""
        frozen_graph = convert_variables_to_constants(session, input_graph_def,
                                                      output_names,
                                                      freeze_var_names)
        # f = tf.gfile.FastGFile(os.path.join('log', 'fronzen_model.pb'), "wb")
        # f.write(frozen_graph.SerializeToString())
        return frozen_graph


# src = "/root/optimization/ocrSecurity/ocr_onnx/outputs/detector/checkpoints/OCR_default/generator_scale_0.h5"
# dst = "/root/optimization/ocrSecurity/ocr_onnx/outputs/detector/checkpoints/OCR_default/generator_scale_0.pb"
src = "/root/optimization/ocrSecurity/ocr_onnx/outputs/detector/checkpoints/OCR_default/final_model_20200313_1.h5"
dst = "/root/optimization/ocrSecurity/ocr_onnx/outputs/detector/checkpoints/OCR_default/final_model_20200313_1.pb"

restored_model = tf.keras.models.load_model(src, compile=True)

onnx_model = keras2onnx.convert_keras(restored_model, restored_model.name)
keras2onnx.save_model(
    onnx_model,
    '/root/optimization/ocrSecurity/ocr_onnx/outputs/detector/checkpoints/OCR_default/final_model_20200313_1.onnx'
)

frozen_graph = freeze_session(
    K.get_session(),
    output_names=[out.op.name for out in restored_model.outputs],
    clear_devices=True)

tf.train.write_graph(frozen_graph, "/tmp", dst, as_text=False)

print("finished")
示例#12
0
    def __init__(self,
                 inputs,
                 arch,
                 cnc_reg,
                 y_true,
                 y_train_labeled_onehot,
                 n_clusters,
                 affinity,
                 scale_nbr,
                 n_nbrs,
                 batch_sizes,
                 result_path,
                 dset,
                 siamese_net=None,
                 x_train=None,
                 lr=0.01,
                 temperature=1.0,
                 bal_reg=0.0):
        self.y_true = y_true
        self.y_train_labeled_onehot = y_train_labeled_onehot
        self.inputs = inputs
        self.batch_sizes = batch_sizes
        self.result_path = result_path
        self.lr = lr
        self.temperature = temperature
        # generate layers
        self.layers = util.make_layer_list(arch[:-1], 'cnc', cnc_reg)

        print('Runing with CNC loss')
        self.layers += [{
            'type': 'None',
            'size': n_clusters,
            'l2_reg': cnc_reg,
            'name': 'cnc_{}'.format(len(arch))
        }]

        # create CncNet
        self.outputs = stack_layers(self.inputs, self.layers)
        self.net = Model(inputs=self.inputs['Unlabeled'],
                         outputs=self.outputs['Unlabeled'])

        # DEFINE LOSS

        # generate affinity matrix W according to params
        if affinity == 'siamese':
            input_affinity = tf.concat(
                [siamese_net.outputs['A'], siamese_net.outputs['Labeled']],
                axis=0)
            x_affinity = siamese_net.predict(x_train, batch_sizes)
        elif affinity in ['knn', 'full']:
            input_affinity = tf.concat(
                [self.inputs['Unlabeled'], self.inputs['Labeled']], axis=0)
            x_affinity = x_train

        # calculate scale for affinity matrix
        scale = util.get_scale(x_affinity, self.batch_sizes['Unlabeled'],
                               scale_nbr)

        # create affinity matrix
        if affinity == 'full':
            weight_mat = affinities.full_affinity(input_affinity, scale=scale)
        elif affinity in ['knn', 'siamese']:
            weight_mat = affinities.knn_affinity(input_affinity,
                                                 n_nbrs,
                                                 scale=scale,
                                                 scale_nbr=scale_nbr)

        # define loss
        self.tau = tf.Variable(self.temperature, name='temperature')
        self.outputs['Unlabeled'] = util.gumbel_softmax(
            self.outputs['Unlabeled'], self.tau)
        num_nodes = self.batch_sizes['Unlabeled']
        cluster_size = tf.reduce_sum(self.outputs['Unlabeled'], axis=0)
        ground_truth = [num_nodes / float(n_clusters)] * n_clusters
        bal = tf.losses.mean_squared_error(ground_truth, cluster_size)

        degree = tf.expand_dims(tf.reduce_sum(weight_mat, axis=1), 0)
        vol = tf.matmul(degree, self.outputs['Unlabeled'], name='vol')
        normalized_prob = tf.divide(self.outputs['Unlabeled'],
                                    vol[tf.newaxis, :],
                                    name='normalized_prob')[0]
        gain = tf.matmul(normalized_prob,
                         tf.transpose(1 - self.outputs['Unlabeled']),
                         name='res2')
        self.loss = tf.reduce_sum(gain * weight_mat) + bal_reg * bal

        # create the train step update
        self.learning_rate = tf.Variable(self.lr, name='cnc_learning_rate')
        self.train_step = tf.train.RMSPropOptimizer(
            learning_rate=self.learning_rate).minimize(
                self.loss, var_list=self.net.trainable_weights)
        # initialize cnc_net variables
        K.get_session().run(tf.global_variables_initializer())
        K.get_session().run(
            tf.variables_initializer(self.net.trainable_weights))
        if affinity == 'siamese':
            output_path = os.path.join(self.main_path, dset)
            load_model(siamese_net, output_path, '_siamese')
示例#13
0
    def __init__(self, model, model_name, preds, confidence, gt_coords):
        """Constructs a GuidedBackprop SaliencyMask."""

        if GuidedBackprop.GuidedReluRegistered is False:

            @tf.RegisterGradient("GuidedRelu")
            def _GuidedReluGrad(op, grad):
                gate_g = tf.cast(grad > 0, "float32")
                gate_y = tf.cast(op.outputs[0] > 0, "float32")
                return gate_y * gate_g * grad

        GuidedBackprop.GuidedReluRegistered = True
        """ 
            Create a dummy session to set the learning phase to 0 (test mode in keras) without 
            inteferring with the session in the original keras model. This is a workaround
            for the problem that tf.gradients returns error with keras models that contains 
            Dropout or BatchNormalization.

            Basic Idea: save keras model => create new keras model with learning phase set to 0 => save
            the tensorflow graph => create new tensorflow graph with ReLU replaced by GuiededReLU.
        """
        # Set to test phase
        K.set_learning_phase(0)

        # Load training model
        if 'train' in model_name:
            print('Loading model ...')
            model = load_model('./tmp/gb_keras_train.h5')

        session = K.get_session()
        tf.compat.v1.train.export_meta_graph()

        saver = tf.compat.v1.train.Saver()
        saver.save(session, './tmp/guided_backprop_ckpt')

        self.guided_graph = tf.Graph()
        with self.guided_graph.as_default():
            self.guided_sess = tf.Session(graph=self.guided_graph)

            with self.guided_graph.gradient_override_map(
                {'LeakyRelu':
                 'GuidedRelu'}):  # replace LeakyRelu with GuidedRelu
                saver = tf.compat.v1.train.import_meta_graph(
                    './tmp/guided_backprop_ckpt.meta')
                saver.restore(self.guided_sess, './tmp/guided_backprop_ckpt')

                output_list = []

                if 'train' in model_name:
                    batch_idx = 0  # which image in the batch (assume batch size =1)
                    anchor_box_idx = 2  # [20,20]
                    prob_obj_idx = 4  # index for probability of a detection

                    grid_hs, grid_ws = grid_coords(gt_coords)
                    gt_grids = list(zip(grid_hs, grid_ws))

                    train_output = self.guided_graph.get_tensor_by_name(
                        model.output.name)  # 64,64,3,6

                    for grid in gt_grids:
                        h = grid[0]
                        w = grid[1]
                        out_tensor = self.guided_graph.get_tensor_by_name(
                            model.output.name)[batch_idx, h, w, anchor_box_idx,
                                               prob_obj_idx]
                        output_list.append(out_tensor)

                elif 'infer' in model_name:
                    preds = preds.tolist()
                    for idx, p in enumerate(preds):
                        p = list(p)
                        if p[5] > confidence:
                            out_tensor = self.guided_graph.get_tensor_by_name(
                                model.output.name)[0, idx, 5]
                            output_list.append(out_tensor)

                self.imported_y = output_list
                self.imported_x = self.guided_graph.get_tensor_by_name(
                    model.input.name)
                self.guided_grads_node = tf.gradients(
                    self.imported_y, self.imported_x
                )  # calculate gradient of class score with respect to input
import tensorflow.compat.v1 as tf
import numpy as np
import tensorflow.compat.v1.keras as keras
import tensorflow.compat.v1.keras.backend as K

tf.disable_v2_behavior()  #code have been written for TF1


def custom_softmax(x):
    m = tf.reduce_max(x, 1)
    x = x - m
    e = tf.exp(x)
    return e / tf.reduce_sum(e, -1)


a = np.random.randn(1, 1000)

tfy = tf.nn.softmax(a)
ky = keras.activations.softmax(K.variable(a))
tfc = custom_softmax(a)

session = K.get_session()

tfy_ = session.run(tfy)
ky_ = session.run(ky)
tfc_ = session.run(tfc)

print("tf vs k", np.abs(tfy_ - ky_).sum())
print("tf vs custom", np.abs(tfy_ - tfc_).sum())
print("custom vs k", np.abs(tfc_ - ky_).sum())
示例#15
0
    def train(self, dataset):
        # Transform data into format to be fed into model

        # Below code is more suitable for run mode than train mode
        '''
    (X, Y, X_valid, Y_valid) = dataset.load_as_list()
    X = self.trainable_model.encode_input(X)
    Y = self.trainable_model.encode_output(Y)
    X_valid = self.trainable_model.encode_input(X_valid)
    Y_valid = self.trainable_model.encode_output(Y_valid)
    '''

        # If using multi-gpu, then we save model/log files in other directory than normal one
        dir_suffix = ''
        gpu_count = len(self.get_available_gpus())
        if self.multi_gpu:
            gpu_count = len(self.get_available_gpus())
            # Changed to save multi-gpu model at the same path as single gpu model
            #if gpu_count > 1:
            #  dir_suffix = '_' + str(gpu_count) + 'gpus'
        print('Training on ' + str(gpu_count) + ' GPU(s)')

        # In case of train mode, we can load data in the wqay that we can utilize caching feature.
        # We separate call between input and output because they are use different transformation approach.
        (X, Y, X_valid,
         Y_valid) = self.trainable_model.load_encoded_data(dataset)
        print(len(X[0]))
        print(len(Y))
        print(len(X_valid[0]))
        print(len(Y_valid))
        '''
    xx = X[0:5]
    yy = Y[0:5]
    print('xx')
    print(xx)
    print('yy')
    print(yy)
    '''

        training_data_count = 0
        if self.input_transform.get_data_dimension() > 1:
            training_data_count = X[0].shape[0]
        else:
            training_data_count = X.shape[0]
        print('Training data count = ' + str(training_data_count))
        batch_count = int(training_data_count /
                          self.training_config['batch_size'])
        print('Batch count = ' + str(batch_count))
        training_data_count = int(batch_count *
                                  self.training_config['batch_size'])
        print('Training data used = ' + str(training_data_count))
        epochs_count = int(self.training_config['epochs'])
        if 'final_epochs' in self.training_config:  # Federated learning will have this vale overidden
            epochs_count = int(self.training_config['final_epochs'])
        training_steps = int(batch_count) * epochs_count
        training_batch_count = batch_count

        validation_data_count = 0
        if self.input_transform.get_data_dimension() > 1:
            validation_data_count = X_valid[0].shape[0]
        else:
            validation_data_count = X_valid.shape[0]
        print('Validation data count = ' + str(validation_data_count))
        batch_count = int(validation_data_count /
                          self.training_config['batch_size'])
        print('Batch count = ' + str(batch_count))
        validation_data_count = int(batch_count *
                                    self.training_config['batch_size'])
        print('Validation data used = ' + str(validation_data_count))

        if self.input_transform.get_data_dimension() > 1:
            X = [a[0:training_data_count] for a in X]
            X_valid = [a[0:validation_data_count] for a in X_valid]
            print('>>> X len = ' + str(len(X[0])))
            print('>>> X_valid len = ' + str(len(X_valid[0])))
        else:
            X = X[0:training_data_count]
            X_valid = X_valid[0:validation_data_count]
            print('>>>> X len = ' + str(X.shape[0]))
            print('>>>> X_valid len = ' + str(X_valid.shape[0]))

        if self.output_transform.get_data_dimension() > 1:
            Y = [a[0:training_data_count] for a in Y]
            Y_valid = [a[0:validation_data_count] for a in Y_valid]
            print('>>> Y len = ' + str(len(X[0])))
            print('>>> Y_valid len = ' + str(len(X_valid[0])))
        else:
            Y = Y[0:training_data_count]
            Y_valid = Y_valid[0:validation_data_count]
            print('>>>> Y len = ' + str(Y.shape[0]))
            print('>>>> Y_valid len = ' + str(Y_valid.shape[0]))

        # If multi-model, wrap it as Data Parallel trainable model
        if gpu_count > 1:
            with tf.device('/cpu'):
                [input_tensors,
                 output_tensors] = self.trainable_model.get_forward_tensors()
                print("=== INPUT_TENSOR ===")
                print(input_tensors)
                print("=== OUTPUT_TENSOR ===")
                print(output_tensors)
                model = Model(input_tensors, output_tensors)
            print("=== CPU TEMPLATE MODEL ===")
            model.summary()
            single_gpu_model = model  # For saving weight
            model = multi_gpu_model(model, gpus=gpu_count)
            print("=== MULTI-GPU MODEL ===")
            model.summary()

        elif gpu_count == 1:
            with tf.device('/gpu'):
                [input_tensors,
                 output_tensors] = self.trainable_model.get_forward_tensors()
            model = Model(input_tensors, output_tensors)
            single_gpu_model = model

        elif gpu_count == 0:
            with tf.device('/cpu'):
                [input_tensors,
                 output_tensors] = self.trainable_model.get_forward_tensors()
            model = Model(input_tensors, output_tensors)
            single_gpu_model = model

        current_epoch_wrapper = LogCurrentEpochWrapper(self.training_config,
                                                       dir_suffix)
        initial_epoch = 0
        if 'resume_if_possible' in self.training_config and self.training_config[
                'resume_if_possible'] == True:
            initial_epoch = current_epoch_wrapper.get_current_epoch()

        # Home of output directory (support multi-OS)
        output_dir = os.path.join(
            *re.split('/|\\\\', self.training_config['output_dir']))
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        optimizer = self.training_config['optimizer']
        if optimizer == 'adam':
            optimizer_params = self.training_config['optimizer_params']
            optimizer = Adam(optimizer_params[0],
                             optimizer_params[1],
                             optimizer_params[2],
                             epsilon=optimizer_params[3])
        elif optimizer == 'bert_adam':
            optimizer_params = self.training_config['optimizer_params']
            # Calculate total step and set it to decay_steps (learning rate reachs 0 in the every end)
            total_steps = batch_count * self.training_config['epochs']
            print('[INFO] Training with BERT Optimizer with decay_steps = ' +
                  str(total_steps))
            from NLP_LIB.optimizer.bert_optimizer import BERTOptimizer
            optimizer = BERTOptimizer(
                decay_steps=total_steps,  # 100000,
                warmup_steps=optimizer_params[2],  # 10000,
                learning_rate=optimizer_params[0],  # 1e-4,
                weight_decay=optimizer_params[1],  # 0.01,
                weight_decay_pattern=[
                    'embeddings', 'kernel', 'W1', 'W2', 'Wk', 'Wq', 'Wv', 'Wo'
                ],
            )
        elif optimizer == 'bert':
            optimizer_params = self.training_config['optimizer_params']
            from NLP_LIB.ext.bert.optimization import AdamWeightDecayOptimizer
            print('initial_epoch = ' + str(initial_epoch))
            print('training_batch_count = ' + str(training_batch_count))
            initial_step = initial_epoch * training_batch_count
            print('initial_step = ' + str(initial_step))
            optimizer = AdamWeightDecayOptimizer(
                initial_step=
                initial_step,  # Start from current epoch to keep model running with correct LR
                learning_rate=optimizer_params[0],  # 0.0001,
                num_train_steps=training_steps,  # 100,
                warmup_steps=optimizer_params[4],  # 10,
                lr_decay_power=optimizer_params[5],
                weight_decay_rate=optimizer_params[6],
                beta_1=optimizer_params[1],  # 0.9,
                beta_2=optimizer_params[2],  # 0.999,
                epsilon=optimizer_params[3],  # 1e-6,
                exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])

        # Add model metric names and tensors to tracking list
        metric_names = self.trainable_model.get_metric_names()
        metric_funcs = self.trainable_model.get_metric_functions()
        '''
    metric_names = self.trainable_model.get_metric_names()
    metric_tensors = self.trainable_model.get_metric_tensors()
    for metric_name, metric_tensor in zip(metric_names, metric_tensors):
      print('Add Metric: ' + metric_name)
      model.metrics_names.append(metric_name)
      model.metrics_tensors.append(metric_tensor)
    '''

        model.compile(optimizer=optimizer,
                      loss=self.trainable_model.get_loss_function(),
                      metrics=metric_funcs)

        model.summary()

        if self.input_transform.get_data_dimension() > 1:
            x_feed = X
            x_valid_feed = X_valid
        else:
            x_feed = [X]
            x_valid_feed = [X_valid]
            #exit(0)

        if self.output_transform.get_data_dimension() > 1:
            y_feed = Y
            y_valid_feed = Y_valid
        else:
            y_feed = [Y]
            y_valid_feed = [Y_valid]

        # If model is sequence model, we have to feed prev_output too.
        # TODO: Can we embed the flow to generate input list into the data transformation class?
        if isinstance(self.trainable_model, SequenceModelWrapper):
            print('OH NOOO!!!')
            #exit(0)

            x_feed.append(Y)
            x_valid_feed.append(Y_valid)

            # Also, if we are running Sequence Model, output will be logits but label will be sparse value.
            # Keras loss function need label and output to be in same dimension, thus we need to convert label to dense value too.
            # The converson to Dense is done in custom loss funciton in the model, but be need to "prepare" addition dimension to sparse label.
            y_feed = [np.expand_dims(Y, axis=2)]
            y_valid_feed = [np.expand_dims(Y_valid, axis=2)]

        class CustomTensorBoard(TensorBoard):
            def __init__(
                    self, log_dir,
                    **kwargs):  # add other arguments to __init__ if you need
                super().__init__(log_dir=log_dir, **kwargs)

            def on_epoch_end(self, epoch, logs=None):
                logs = logs or {}
                # If there is learning_rate_tensor in the optimizer, we want to log it too.
                if hasattr(optimizer, 'learning_rate_tensor'):
                    logs.update({
                        'learning_rate':
                        K.eval(optimizer.learning_rate_tensor)
                    })
                '''
        # Also add gradient norm as a default metric
        # Get a "l2 norm of gradients" tensor
        def get_gradient_norm(model):
          with K.name_scope('gradient_norm'):
            grads = K.gradients(model.total_loss, model.trainable_weights)
            norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads]))
          return norm
        logs.update({'gradient_norm': K.eval(get_gradient_norm(model))})
        '''
                super().on_epoch_end(epoch, logs)

        # Tensorboard log directory
        tboard_log_dir = os.path.join(output_dir, 'tboard_log' + dir_suffix)
        if not os.path.exists(tboard_log_dir):
            os.makedirs(tboard_log_dir)
        tboard_log_saver = CustomTensorBoard(tboard_log_dir,
                                             write_graph=False,
                                             write_images=False)

        # For saving weight history along with accuracy in each epoch (May use a lot of disk)
        verbose_model_saver = None
        if self.training_config['save_weight_history']:
            verbose_log_dir = os.path.join(output_dir,
                                           'weight_history' + dir_suffix)
            if not os.path.exists(verbose_log_dir):
                os.makedirs(verbose_log_dir)
            verbose_weight_history_filepath = os.path.join(
                verbose_log_dir, 'weights.{epoch:02d}-{' +
                self.training_config['watch_metric'] + ':.4f}.h5')

            # If there is option to specified number of eopch to be saved
            if 'save_weight_every' in self.training_config:
                save_weight_every = self.training_config['save_weight_every']
                print('[INFO] Save weight every = ' + str(save_weight_every))
                verbose_model_saver = RefModelCheckpoint(
                    verbose_weight_history_filepath,
                    single_gpu_model,
                    save_best_only=False,
                    save_weights_only=True,
                    period=save_weight_every)
            else:
                verbose_model_saver = RefModelCheckpoint(
                    verbose_weight_history_filepath,
                    single_gpu_model,
                    save_best_only=False,
                    save_weights_only=True)

        model.summary()

        # Initialize all variables, including local variables created by metrics calculations and optimizers.
        sess = K.get_session()
        init = tf.group(tf.global_variables_initializer(),
                        tf.local_variables_initializer())
        sess.run(init)

        #####
        ## DEBUG Print some training variable before loading checkpoint
        #global_vars = tf.global_variables()
        #print('[DEBUG]: First Weight Name = ' + str(global_vars[0].name))
        #print('[DEBUG]: First Weight = ' + str(sess.run(global_vars[0])))

        # Callback to model after finish variable initialization, init_from_checkpoint is loaded here.
        self.trainable_model.on_after_init(single_gpu_model)

        # If resume training, load latest checkpoint
        # Checkpoint saving directory
        checkpoint_dir = os.path.join(output_dir, 'checkpoint')
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
        last_checkpoint_filepath = os.path.join(
            checkpoint_dir, 'last_weight' + dir_suffix + '.h5')
        if 'resume_if_possible' in self.training_config and self.training_config[
                'resume_if_possible'] == True:
            print('Init model ' + str(self) + ' from epoch: ' +
                  str(initial_epoch))
            if os.path.exists(last_checkpoint_filepath):
                print('Init model ' + str(self) + ' from checkpoint: ' +
                      last_checkpoint_filepath)
                single_gpu_model.load_weights(last_checkpoint_filepath)

        self.training_config['initial_epoch'] = initial_epoch

        checkpoint_filepath = os.path.join(checkpoint_dir,
                                           'best_weight' + dir_suffix + '.h5')
        model_saver = RefModelCheckpoint(checkpoint_filepath,
                                         single_gpu_model,
                                         save_best_only=True,
                                         save_weights_only=True)

        # Also always save lastest model for continue training
        last_model_saver = RefModelCheckpoint(last_checkpoint_filepath,
                                              single_gpu_model,
                                              save_best_only=False,
                                              save_weights_only=True)

        # Construct all training callbacks
        training_callbacks = [model_saver, last_model_saver, tboard_log_saver]
        if verbose_model_saver is not None:
            training_callbacks.append(verbose_model_saver)
        if self.callback_list is not None:
            for callback in self.callback_list:
                training_callbacks.append(callback.get_keras_callback())

        # Save current epoch
        training_callbacks.append(current_epoch_wrapper.get_keras_callback())

        #####
        ## DEBUG Print some training variable before after checkpoint
        #global_vars = tf.global_variables()
        #print('[DEBUG]: First Weight Name = ' + str(global_vars[0].name))
        #print('[DEBUG]: First Weight = ' + str(sess.run(global_vars[0])))

        print('Start training.')
        '''
    with tf.Session(config = tf.ConfigProto(log_device_placement = False, allow_soft_placement=False)) as sess:
      init = tf.global_variables_initializer()
      sess.run(init)      

      model.fit(x=x_feed, y=y_feed,
        batch_size=self.training_config['batch_size'],
        epochs=self.training_config['epochs'],
        validation_data=(x_valid_feed, y_valid_feed),
        callbacks=training_callbacks,
        initial_epoch=initial_epoch
      )
    '''

        # print(model.trainable_weights)

        model.fit(x=x_feed,
                  y=y_feed,
                  batch_size=self.training_config['batch_size'],
                  epochs=self.training_config['epochs'],
                  validation_data=(x_valid_feed, y_valid_feed),
                  callbacks=training_callbacks,
                  initial_epoch=initial_epoch)

        print('Finished training.')

        # Return trained model (single_gpu_model) and validation set as output.
        # They are used for further benchmarking like in federated training.
        return (single_gpu_model, x_valid_feed, y_valid_feed)