def get_seq_model():
  """Define three channel input shape depending on image data format."""
  if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
  else:
    input_shape = (img_width, img_height, 3)

  # Initialize CNN by creating a sequential model.
  model = Sequential()
  model.add(Conv2D(32, (3, 3), input_shape=input_shape))
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(32, (3, 3)))
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Conv2D(64, (3, 3)))
  model.add(Activation('relu'))
  model.add(MaxPooling2D(pool_size=(2, 2)))

  model.add(Flatten())
  model.add(Dense(64))
  model.add(Activation('relu'))
  model.add(Dropout(0.5))
  model.add(Dense(2))
  model.add(Activation('sigmoid'))

  model.compile(
      loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])

  return model
 def inner(x):
     x = LayerNormalization()(x)
     x = Activation("relu")(x)
     x = Convolution2D(channels, 3, strides=strides, **params)(x)
     x = Dropout(drop_rate)(x) if drop_rate > 0 else x
     x = LayerNormalization()(x)
     x = Activation("relu")(x)
     x = Convolution2D(channels, 3, **params)(x)
     return x
示例#3
0
文件: models.py 项目: ameroueh/oaz
def residual_block(
    inputs,
    num_filters=16,
    kernel_size=3,
    strides=1,
    activation="relu",
    batch_normalization=True,
    conv_first=True,
):
    """2D Convolution-Batch Normalization-Activation stack builder

    # Arguments
        inputs (tensor): input tensor from input image or previous layer
        num_filters (int): Conv2D number of filters
        kernel_size (int): Conv2D square kernel dimensions
        strides (int): Conv2D square stride dimensions
        activation (string): activation name
        batch_normalization (bool): whether to include batch normalization
        conv_first (bool): conv-bn-activation (True) or
            bn-activation-conv (False)

    # Returns
        x (tensor): tensor as input to the next layer
    """
    conv = Conv2D(
        num_filters,
        kernel_size=kernel_size,
        strides=strides,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=l2(1e-4),
        activation=None,
    )
    conv2 = Conv2D(
        num_filters,
        kernel_size=kernel_size,
        strides=strides,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=l2(1e-4),
        activation="linear",
    )

    x = conv(inputs)
    x = BatchNormalization()(x)
    x = Activation(activation)(x)
    x = conv2(x)
    x = add([inputs, x])
    x = BatchNormalization()(x)
    x = Activation(activation)(x)
    return x
示例#4
0
 def DNNclassifier_crps(self, p, num_cut, optimizer, seeding):
     
     tf.set_random_seed(seeding)
     inputs = Input(shape=(p,))
     if isinstance(optimizer, str):
         opt = optimizer
     else:
         opt_name = optimizer.__class__.__name__
         opt_config = optimizer.get_config()
         opt_class = getattr(optimizers, opt_name)
         opt = opt_class(**opt_config)
     
     for i, n_neuron in enumerate(self.hidden_list):
         if i == 0:
             net = Dense(n_neuron, kernel_initializer = 'he_uniform')(inputs)
         else:
             net = Dense(n_neuron, kernel_initializer = 'he_uniform')(net)
         net = Activation(activation = 'elu')(net)
         net = BatchNormalization()(net)
         net = Dropout(rate=self.dropout_list[i])(net)
     
     softmaxlayer = Dense(num_cut + 1, activation='softmax', 
                    kernel_initializer = 'he_uniform')(net)
     
     output = Lambda(self.tf_cumsum)(softmaxlayer)
     model = Model(inputs = [inputs], outputs=[output])
     model.compile(optimizer=opt, loss=self.crps_loss)
 
     return model
def build_elu_cnn(input_shape, output_size):
    """Build a variation of the CNN implemented in the ELU paper.

    https://arxiv.org/abs/1511.07289
    """
    def layers(n, channels, kernel):
        return sum(([
            Convolution2D(channels, kernel_size=kernel, padding="same"),
            ELU()
        ] for i in range(n)), [])

    model = Sequential(
        [
            Convolution2D(
                384, kernel_size=3, padding="same", input_shape=input_shape)
        ] + layers(1, 384, 3) + [MaxPooling2D(pool_size=(2, 2))] +
        layers(1, 384, 1) + layers(1, 384, 2) + layers(2, 640, 2) +
        [MaxPooling2D(pool_size=(2, 2))] + layers(1, 640, 1) +
        layers(3, 768, 2) + [MaxPooling2D(pool_size=(2, 2))] +
        layers(1, 768, 1) + layers(2, 896, 2) +
        [MaxPooling2D(pool_size=(2, 2))] + layers(1, 896, 3) +
        layers(2, 1024, 2) + [
            MaxPooling2D(pool_size=(2, 2)),
            Convolution2D(output_size, kernel_size=1, padding="same"),
            GlobalAveragePooling2D(),
            Activation("softmax")
        ])

    model.compile(optimizer=SGD(momentum=0.9),
                  loss="categorical_crossentropy",
                  metrics=["accuracy"])

    return model
示例#6
0
def ensure_softmax_output(model):
    """
    Adds a softmax layer on top of the logits layer, in case the output layer 
    is a logits layer.

    Parameters
    ----------
    model : Keras Model
        The original model

    Returns
    -------
    new_model : Keras Model
        The modified model
    """

    if 'softmax' not in model.output_names:
        if 'logits' in model.output_names:
            output = Activation('softmax', name='softmax')(model.output)
            new_model = Model(inputs=model.input, outputs=output)
        else:
            raise ValueError('The output layer is neither softmax nor logits')
    else:
        new_model = model

    return new_model
示例#7
0
def NN_huaweiv1(maxlen, embedding_matrix=None, class_num1=17, class_num2=12):
    emb_layer = Embedding(
        embedding_matrix.shape[0],
        embedding_matrix.shape[1],
        input_length=maxlen,
        weights=[embedding_matrix],
        trainable=False,
    )
    seq1 = Input(shape=(maxlen, ))

    emb = emb_layer(seq1)
    sdrop = SpatialDropout1D(rate=0.2)
    lstm_layer = Bidirectional(CuDNNGRU(128, return_sequences=True))
    gru_layer = Bidirectional(CuDNNGRU(128, return_sequences=True))
    cnn1d_layer = Conv1D(64,
                         kernel_size=3,
                         padding="same",
                         kernel_initializer="he_uniform")
    sd = sdrop(emb)
    lstm1 = lstm_layer(sd)
    gru1 = gru_layer(lstm1)
    cnn1 = cnn1d_layer(gru1)
    gru1 = concatenate([lstm1, gru1, cnn1])
    att_1 = Attention(maxlen)(gru1)
    att_2 = Attention(maxlen)(gru1)
    att_3 = Attention(maxlen)(gru1)
    att_4 = Attention(maxlen)(gru1)

    x1 = Activation(activation="relu")(BatchNormalization()(Dense(128)(att_1)))
    x2 = Activation(activation="relu")(BatchNormalization()(Dense(128)(att_2)))
    x3 = Activation(activation="relu")(BatchNormalization()(Dense(128)(att_3)))
    x4 = Activation(activation="relu")(BatchNormalization()(Dense(128)(att_4)))

    pred1_1 = Dense(class_num1 - 10, activation='sigmoid')(x1)
    pred1_2 = Dense(10, activation='sigmoid')(x2)
    pred1 = concatenate([pred1_1, pred1_2], axis=-1, name='pred1')

    pred2_1 = Dense(class_num2 - 9, activation='sigmoid')(x3)
    pred2_2 = Dense(9, activation='sigmoid')(x4)

    pred2 = concatenate(
        [pred2_1, pred2_2], axis=-1, name='pred2'
    )  # Dense(class_num2, activation='sigmoid',name='pred2')(y)

    model = Model(inputs=seq1, outputs=[pred1, pred2])
    return model
示例#8
0
def NN_huaweiv1(maxlen, embedding_matrix=None, class_num1=17, class_num2=12):
    emb_layer = Embedding(
        embedding_matrix.shape[0],
        embedding_matrix.shape[1],
        input_length=maxlen,
        weights=[embedding_matrix],
        trainable=False,
    )
    seq1 = Input(shape=(maxlen, ))

    x1 = emb_layer(seq1)
    sdrop = SpatialDropout1D(rate=0.2)
    lstm_layer = Bidirectional(CuDNNGRU(128, return_sequences=True))
    gru_layer = Bidirectional(CuDNNGRU(128, return_sequences=True))
    cnn1d_layer = Conv1D(64,
                         kernel_size=3,
                         padding="same",
                         kernel_initializer="he_uniform")
    x1 = sdrop(x1)
    lstm1 = lstm_layer(x1)
    gru1 = gru_layer(lstm1)
    att_1 = Attention(maxlen)(lstm1)
    att_2 = Attention(maxlen)(gru1)
    cnn1 = cnn1d_layer(lstm1)

    avg_pool = GlobalAveragePooling1D()
    max_pool = GlobalMaxPooling1D()

    x1 = concatenate([
        att_1, att_2,
        Attention(maxlen)(cnn1),
        avg_pool(cnn1),
        max_pool(cnn1)
    ])

    x = Dropout(0.2)(Activation(activation="relu")(BatchNormalization()(
        Dense(128)(x1))))
    x = Activation(activation="relu")(BatchNormalization()(Dense(64)(x)))
    pred1 = Dense(class_num1, activation='sigmoid', name='pred1')(x)
    y = concatenate([x1, x])
    y = Activation(activation="relu")(BatchNormalization()(Dense(64)(x)))
    pred2 = Dense(class_num2, activation='sigmoid', name='pred2')(y)

    model = Model(inputs=seq1, outputs=[pred1, pred2])
    return model
def build_small_cnn(input_shape, output_size):
    model = Sequential([
        # conv1_*
        Convolution2D(32,
                      kernel_size=3,
                      padding="same",
                      input_shape=input_shape),
        Activation("relu"),
        Convolution2D(32, kernel_size=3, padding="same"),
        Activation("relu"),
        MaxPooling2D(pool_size=(2, 2)),

        # conv2_*
        Convolution2D(64, kernel_size=3, padding="same"),
        Activation("relu"),
        Convolution2D(64, kernel_size=3, padding="same"),
        Activation("relu"),
        MaxPooling2D(pool_size=(2, 2)),

        # Fully connected
        Flatten(),
        Dense(512),
        Activation("relu"),
        Dense(512),
        Activation("relu"),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(loss="categorical_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])

    return model
def build_cnn(input_shape, output_size):
    kwargs = {"kernel_size": 3, "activation": "relu", "padding": "same"}
    model = Sequential([
        # conv1_*
        Convolution2D(64, input_shape=input_shape, **kwargs),
        BatchRenormalization(),
        Convolution2D(64, **kwargs),
        BatchRenormalization(),
        MaxPooling2D(pool_size=(2, 2)),
        Dropout(0.25),

        # conv2_*
        Convolution2D(128, **kwargs),
        BatchRenormalization(),
        Convolution2D(128, **kwargs),
        BatchRenormalization(),
        MaxPooling2D(pool_size=(2, 2)),
        Dropout(0.25),

        # conv3_*
        Convolution2D(256, **kwargs),
        BatchRenormalization(),
        Convolution2D(256, **kwargs),
        BatchRenormalization(),
        MaxPooling2D(pool_size=(2, 2)),
        Dropout(0.25),

        # Fully connected
        Flatten(),
        Dense(1024),
        Activation("relu"),
        Dropout(0.5),
        Dense(512),
        Activation("relu"),
        Dropout(0.5),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(loss="categorical_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])

    return model
def build_lr(input_shape, output_size):
    model = Sequential([
        Flatten(input_shape=input_shape),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(loss="categorical_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])

    return model
    def face_impl(input_shape, output_size):
        x = Input(shape=input_shape)
        e = modelf(input_shape, embedding)(x)
        y = Dense(output_size)(e)
        y = Activation("softmax")(y)

        model = Model(x, y)
        model.compile("adam",
                      "sparse_categorical_crossentropy",
                      metrics=["accuracy"])

        return model
示例#13
0
def build_lstm_model(input_data, output_size, neurons=20, activ_func='linear',
                     dropout=0.25, loss='mae', optimizer='adam'):
    model = Sequential()
    model.add(CuDNNLSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2]), return_sequences=True))
    model.add(Dropout(dropout))
    model.add(CuDNNLSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2])))
    model.add(Dropout(dropout))
    model.add(Dense(units=output_size))
    model.add(Activation(activ_func))

    model.compile(loss=loss, optimizer=optimizer)
    return model
def inception_block_1a(X):
    """
    Implementation of an inception block
    """

    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name='inception_3a_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)

    X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
    X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)

    # CONCAT
    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception
def inception_block_1b(X):
    X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name='inception_3b_3x3_conv1')(X)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn1')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)
    X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
    X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3b_3x3_conv2')(X_3x3)
    X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn2')(X_3x3)
    X_3x3 = Activation('relu')(X_3x3)

    X_5x5 = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3b_5x5_conv1')(X)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn1')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)
    X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
    X_5x5 = Conv2D(64, (5, 5), data_format='channels_first', name='inception_3b_5x5_conv2')(X_5x5)
    X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn2')(X_5x5)
    X_5x5 = Activation('relu')(X_5x5)

    X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X)
    X_pool = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_pool_conv')(X_pool)
    X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_pool_bn')(X_pool)
    X_pool = Activation('relu')(X_pool)
    X_pool = ZeroPadding2D(padding=(4, 4), data_format='channels_first')(X_pool)

    X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_1x1_conv')(X)
    X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_1x1_bn')(X_1x1)
    X_1x1 = Activation('relu')(X_1x1)

    inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)

    return inception
def build_lstm_timit(input_shape, output_size):
    """Build a simple LSTM to classify the phonemes in the TIMIT dataset"""
    model = Sequential([
        LSTM(256, unroll=True, input_shape=input_shape),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(optimizer="adam",
                  loss="sparse_categorical_crossentropy",
                  metrics=["accuracy"])

    return model
def build_lstm_mnist(input_shape, output_size):
    """Build a small LSTM to recognize MNIST digits as permuted sequences"""
    model = Sequential([
        CuDNNLSTM(128, input_shape=input_shape),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(optimizer="adam",
                  loss="categorical_crossentropy",
                  metrics=["accuracy"])

    return model
def build_lstm_lm(input_shape, output_size):
    # LM datasets will report the vocab_size as output_size
    vocab_size = output_size

    model = Sequential([
        Embedding(vocab_size + 1,
                  64,
                  mask_zero=True,
                  input_length=input_shape[0]),
        LSTM(256, unroll=True, return_sequences=True),
        LSTM(256, unroll=True),
        Dense(output_size),
        Activation("softmax")
    ])

    model.compile(optimizer="adam",
                  loss="sparse_categorical_crossentropy",
                  metrics=["accuracy"])

    return model
def build_all_conv_nn(input_shape, output_size):
    """Build a small variation of the best performing network from
    'Springenberg, Jost Tobias, et al. "Striving for simplicity: The all
     convolutional net." arXiv preprint arXiv:1412.6806 (2014)' which should
     achieve approximately 91% in CIFAR-10.
    """
    kwargs = {"activation": "relu", "border_mode": "same"}
    model = Sequential([
        # conv1
        Convolution2D(96, 3, 3, input_shape=input_shape, **kwargs),
        BatchRenormalization(),
        Convolution2D(96, 3, 3, **kwargs),
        BatchRenormalization(),
        Convolution2D(96, 3, 3, subsample=(2, 2), **kwargs),
        BatchRenormalization(),
        Dropout(0.25),

        # conv2
        Convolution2D(192, 3, 3, **kwargs),
        BatchRenormalization(),
        Convolution2D(192, 3, 3, **kwargs),
        BatchRenormalization(),
        Convolution2D(192, 3, 3, subsample=(2, 2), **kwargs),
        BatchRenormalization(),
        Dropout(0.25),

        # conv3
        Convolution2D(192, 1, 1, **kwargs),
        BatchRenormalization(),
        Dropout(0.25),
        Convolution2D(output_size, 1, 1, **kwargs),
        GlobalAveragePooling2D(),
        Activation("softmax")
    ])

    model.compile(loss="categorical_crossentropy",
                  optimizer=SGD(momentum=0.9),
                  metrics=["accuracy"])

    return model
示例#20
0
    if i % 15 == 0: return np.array([0, 0, 0, 1], dtype=np.float32)
    elif i % 5 == 0: return np.array([0, 0, 1, 0], dtype=np.float32)
    elif i % 3 == 0: return np.array([0, 1, 0, 0], dtype=np.float32)
    else: return np.array([1, 0, 0, 0], dtype=np.float32)


def bin(i, num_digits):
    return np.array([i >> d & 1 for d in range(num_digits)], dtype=np.float32)


NUM_DIGITS = 7
trX = np.array([bin(i, NUM_DIGITS) for i in range(1, 101)])
trY = np.array([fizzbuzz(i) for i in range(1, 101)])
model = Sequential()
model.add(Dense(64, input_dim=7))
model.add(Activation('tanh'))
model.add(Dense(4, input_dim=64))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
model.fit(trX, trY, epochs=3600, batch_size=64)
model.save('fizzbuzz_model.h5')


def representative_dataset_gen():
    for i in range(100):
        yield [trX[i:i + 1]]


converter = lite.TFLiteConverter.from_keras_model_file('fizzbuzz_model.h5')
示例#21
0
def keras_build_fn(num_feature,
                   num_output,
                   is_sparse,
                   embedding_dim=-1,
                   num_hidden_layer=2,
                   hidden_layer_dim=512,
                   activation='elu',
                   learning_rate=1e-3,
                   dropout=0.5,
                   l1=0.0,
                   l2=0.0,
                   loss='categorical_crossentropy'):
    """Initializes and compiles a Keras DNN model using the Adam optimizer.

  Args:
    num_feature: number of features
    num_output: number of outputs (targets, e.g., classes))
    is_sparse: boolean whether input data is in sparse format
    embedding_dim: int number of nodes in embedding layer; if value is <= 0 then
      no embedding layer will be present in the model
    num_hidden_layer: number of hidden layers
    hidden_layer_dim: int number of nodes in the hidden layer(s)
    activation: string
      activation function for hidden layers; see https://keras.io/activations/
    learning_rate: float learning rate for Adam
    dropout: float proportion of nodes to dropout; values in [0, 1]
    l1: float strength of L1 regularization on weights
    l2: float strength of L2 regularization on weights
    loss: string
      loss function; see https://keras.io/losses/

  Returns:
    model: Keras.models.Model
      compiled Keras model
  """
    assert num_hidden_layer >= 1

    inputs = Input(shape=(num_feature, ), sparse=is_sparse)

    activation_func_args = ()
    if activation.lower() == 'prelu':
        activation_func = PReLU
    elif activation.lower() == 'leakyrelu':
        activation_func = LeakyReLU
    elif activation.lower() == 'elu':
        activation_func = ELU
    elif activation.lower() == 'thresholdedrelu':
        activation_func = ThresholdedReLU
    else:
        activation_func = Activation
        activation_func_args = (activation)

    if l1 > 0 and l2 > 0:
        reg_init = lambda: regularizers.l1_l2(l1, l2)
    elif l1 > 0:
        reg_init = lambda: regularizers.l1(l1)
    elif l2 > 0:
        reg_init = lambda: regularizers.l2(l2)
    else:
        reg_init = lambda: None

    if embedding_dim > 0:
        # embedding layer
        e = Dense(embedding_dim)(inputs)

        x = Dense(hidden_layer_dim, kernel_regularizer=reg_init())(e)
        x = activation_func(*activation_func_args)(x)
        x = Dropout(dropout)(x)
    else:
        x = Dense(hidden_layer_dim, kernel_regularizer=reg_init())(inputs)
        x = activation_func(*activation_func_args)(x)
        x = Dropout(dropout)(x)

    # add additional hidden layers
    for _ in range(num_hidden_layer - 1):
        x = Dense(hidden_layer_dim, kernel_regularizer=reg_init())(x)
        x = activation_func(*activation_func_args)(x)
        x = Dropout(dropout)(x)

    x = Dense(num_output)(x)
    preds = Activation('softmax')(x)

    model = Model(inputs=inputs, outputs=preds)
    model.compile(optimizer=Adam(lr=learning_rate), loss=loss)

    return model
def InceptionModel(input_shape):
    """
    Implementation of the Inception model used for FaceNet
    
    Arguments:
    input_shape -- shape of the images of the dataset

    Returns:
    model -- a Model() instance in Keras
    """

    # Define the input as a tensor with shape input_shape
    X_input = Input(input_shape)

    # Zero-Padding
    X = ZeroPadding2D((3, 3))(X_input)

    # First Block
    X = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(X)
    X = BatchNormalization(axis=1, name='bn1')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D((3, 3), strides=2)(X)

    # Second Block
    X = Conv2D(64, (1, 1), strides=(1, 1), name='conv2')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn2')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)

    # Second Block
    X = Conv2D(192, (3, 3), strides=(1, 1), name='conv3')(X)
    X = BatchNormalization(axis=1, epsilon=0.00001, name='bn3')(X)
    X = Activation('relu')(X)

    # Zero-Padding + MAXPOOL
    X = ZeroPadding2D((1, 1))(X)
    X = MaxPooling2D(pool_size=3, strides=2)(X)

    # Inception 1: a/b/c
    X = inception_block_1a(X)
    X = inception_block_1b(X)
    X = inception_block_1c(X)

    # Inception 2: a/b
    X = inception_block_2a(X)
    X = inception_block_2b(X)

    # Inception 3: a/b
    X = inception_block_3a(X)
    X = inception_block_3b(X)

    # Top layer
    X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), data_format='channels_first')(X)
    X = Flatten()(X)
    X = Dense(128, name='dense_layer')(X)

    # L2 normalization
    X = Lambda(lambda x: K.l2_normalize(x, axis=1))(X)

    # Create model instance
    model = Model(inputs=X_input, outputs=X, name='FaceRecoModel')

    return model
dense_layers = [0, 1, 2]
layer_sizes = [4, 8, 16]
conv_layers = [1, 2]

for dense_layer in dense_layers:
    for layer_size in layer_sizes:
        for conv_layer in conv_layers:
            NAME = f'Pneumonia-{IMG_SIZE}px-{NUM_SAMPLES}samples-{conv_layer}conv-{layer_size}nodes-{dense_layer}dense-{int(time.time())}'
            tensorboard = TensorBoard(log_dir=f'logs/{NAME}')
            print(NAME)

            model = Sequential()
            # format: Num of filters, window/step, dimensions
            model.add(Conv2D(layer_size, (3, 3),
                             input_shape=x_train.shape[1:]))
            model.add(Activation("relu"))
            model.add(MaxPooling2D(pool_size=(2, 2)))
            print('Layer 0 generated')

            for i in range(conv_layer - 1):
                print(f'Layer {i + 1} generated.')
                model.add(Conv2D(layer_size, (3, 3)))
                model.add(Activation("relu"))
                model.add(MaxPooling2D(pool_size=(2, 2)))

            model.add(Flatten())
            for l in range(dense_layer):
                model.add(Dense(layer_size))
                model.add(Activation("relu"))

            model.add(Dense(1))
示例#24
0
文件: models.py 项目: ameroueh/oaz
def create_alpha_zero_model(
    depth,
    input_shape,
    policy_output_size,
    num_filters=64,
    activation="relu",
    policy_factor=1.0,
):
    input = tf.keras.Input(shape=input_shape, name="input")
    conv = Conv2D(
        num_filters,
        kernel_size=3,
        strides=1,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=l2(1e-4),
        activation=None,
    )

    x = conv(input)
    x = BatchNormalization()(x)
    x = Activation(activation)(x)

    block_output = residual_block(inputs=x, strides=1, num_filters=num_filters)

    for _ in range(depth):
        block_output = residual_block(inputs=block_output,
                                      strides=1,
                                      num_filters=num_filters)

    # TODO: consider adding an extra conv layer here and for the policy head as
    # well, see https://medium.com/oracledevs/lessons-from-alpha-zero-part-6-hyperparameter-tuning-b1cfcbe4ca9
    value_conv_output = Conv2D(
        num_filters // 2,
        kernel_size=3,
        strides=1,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=l2(1e-4),
        activation=None,
    )(block_output)
    value_conv_output = BatchNormalization()(value_conv_output)
    value_conv_output = Activation(activation)(value_conv_output)

    value = Dense(
        units=1,
        kernel_regularizer=l2(1e-4),
        kernel_initializer="he_normal",
        activation="tanh",
        name="value",
    )(Flatten()(value_conv_output))

    policy_conv_output = Conv2D(
        num_filters // 2,
        kernel_size=3,
        strides=1,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=l2(1e-4),
        activation=None,
    )(block_output)

    policy_conv_output = BatchNormalization()(policy_conv_output)
    policy_conv_output = Activation(activation)(policy_conv_output)

    policy = (Dense(
        units=policy_output_size,
        kernel_regularizer=l2(1e-4),
        kernel_initializer="he_normal",
        activation=None,
    )(Flatten()(policy_conv_output)) * policy_factor)
    policy = Activation("softmax", name="policy")(policy)
    # policy = tf.keras.layers.Lambda(
    #     # lambda x: x * policy_factor, name="policy"
    # )(policy)
    model = tf.keras.Model(inputs=input, outputs=[policy, value])

    return model
    def wide_resnet_impl(input_shape, output_size):
        def conv(channels,
                 strides,
                 params=dict(padding="same",
                             use_bias=False,
                             kernel_regularizer=l2(5e-4))):
            def inner(x):
                x = LayerNormalization()(x)
                x = Activation("relu")(x)
                x = Convolution2D(channels, 3, strides=strides, **params)(x)
                x = Dropout(drop_rate)(x) if drop_rate > 0 else x
                x = LayerNormalization()(x)
                x = Activation("relu")(x)
                x = Convolution2D(channels, 3, **params)(x)
                return x

            return inner

        def resize(x, shape):
            if K.int_shape(x) == shape:
                return x
            channels = shape[3 if K.image_data_format() ==
                             "channels_last" else 1]
            strides = K.int_shape(x)[2] // shape[2]
            return Convolution2D(channels,
                                 1,
                                 padding="same",
                                 use_bias=False,
                                 strides=strides)(x)

        def block(channels, k, n, strides):
            def inner(x):
                for i in range(n):
                    x2 = conv(channels * k, strides if i == 0 else 1)(x)
                    x = add([resize(x, K.int_shape(x2)), x2])
                return x

            return inner

        # According to the paper L = 6*n+4
        n = int((L - 4) / 6)

        group0 = Convolution2D(16,
                               3,
                               padding="same",
                               use_bias=False,
                               kernel_regularizer=l2(5e-4))
        group1 = block(16, k, n, 1)
        group2 = block(32, k, n, 2)
        group3 = block(64, k, n, 2)

        x_in = x = Input(shape=input_shape)
        x = group0(x)
        x = group1(x)
        x = group2(x)
        x = group3(x)

        x = LayerNormalization()(x)
        x = Activation("relu")(x)
        x = GlobalAveragePooling2D()(x)
        x = Dense(output_size, kernel_regularizer=l2(5e-4))(x)
        y = Activation("softmax")(x)

        model = Model(inputs=x_in, outputs=y)
        model.compile(loss="categorical_crossentropy",
                      optimizer="adam",
                      metrics=["accuracy"])

        return model
示例#26
0
def _bn_relu(input):
    """Helper to build a BN -> relu block (by @raghakot)."""
    norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
    return Activation("relu")(norm)