示例#1
0
    def _build_networks(self):
        """Builds the Q-value network computations needed for acting and training.

    These are:
      self.online_convnet: For computing the current state's Q-values.
      self.target_convnet: For computing the next state's target Q-values.
      self._net_outputs: The actual Q-values.
      self._q_argmax: The action maximizing the current state's Q-values.
      self._replay_net_outputs: The replayed states' Q-values.
      self._replay_next_target_net_outputs: The replayed next states' target
        Q-values (see Mnih et al., 2015 for details).
      self.linear_features: The linear features from second last layer
    """
        # Calling online_convnet will generate a new graph as defined in
        # self._get_network_template using whatever input is passed, but will always
        # share the same weights.
        self.online_convnet = tf.make_template('Online',
                                               self._network_template)
        self.target_convnet = tf.make_template('Target',
                                               self._network_template)
        self._net_outputs, self.linear_features = self.online_convnet(
            self.state_ph)
        self._next_target_net_outputs_q, self.target_linear_features = self.target_convnet(
            self.state_ph)
        self.next_qt_max = tf.reduce_max(self._next_target_net_outputs_q)
        self.ddqn_replay_next_target_net_outputs, _ = self.online_convnet(
            self._replay.next_states)
        self._q_argmax = tf.argmax(self._net_outputs.q_values, axis=1)[0]

        self._replay_net_outputs, _ = self.online_convnet(self._replay.states)
        self._replay_next_target_net_outputs, _ = self.target_convnet(
            self._replay.next_states)
    def _build_networks(self):
        """Builds the Q-value network computations needed for acting and training.

    These are:
      self.online_convnet: For computing the current state's Q-values.
      self.target_convnet: For computing the next state's target Q-values.
      self._net_outputs: The actual Q-values.
      self._q_argmax: The action maximizing the current state's Q-values.
      self._replay_net_outputs: The replayed states' Q-values.
      self._replay_next_target_net_outputs: The replayed next states' target
        Q-values (see Mnih et al., 2015 for details).
    """
        # Calling online_convnet will generate a new graph as defined in
        # self._get_network_template using whatever input is passed, but will always
        # share the same weights.
        self.online_convnet = tf.make_template('Online',
                                               self._network_template)
        self.target_convnet = tf.make_template('Target',
                                               self._network_template)
        self._net_outputs = self.online_convnet(self.state_ph)

        self._replay_net_outputs = self.online_convnet(self._replay.states)
        self._replay_next_target_net_outputs = self.target_convnet(
            self._replay.next_states)

        if self.acting_policy == 'hyperbolic':
            self._q_argmax = tf.argmax(self._net_outputs.hyp_q_value,
                                       axis=1)[0]
        elif self.acting_policy == 'largest_gamma':
            self._q_argmax = tf.argmax(self._net_outputs.q_values[-1],
                                       axis=1)[0]
        else:
            raise NotImplementedError
示例#3
0
  def _build_all_bisimulation_parts(self):
    """Builds the bisimulation networks and ops."""
    self.batch_size = tf.shape(self._replay.rewards)[0]
    self._replay_target_outputs = self.target_convnet(self._replay.states)
    self.bisim_horizon_ph = tf.placeholder(tf.float32, ())
    self.online_bisimulation = tf.make_template('OnlineBisim',
                                                bisimulation_network)
    self.target_bisimulation = tf.make_template('TargetBisim',
                                                bisimulation_network,
                                                trainable=False)
    # For evaluating the metric from an episode's first state.
    self.source_state_ph = tf.placeholder(self.observation_dtype,
                                          self.state_ph.shape,
                                          name='source_state_ph')
    self._initial_state_net = self.online_convnet(self.source_state_ph)
    concat_states = tf.concat(
        [self._initial_state_net.representation,
         self._net_outputs.representation], 1)
    self.state_distances = tf.squeeze(self.online_bisimulation(concat_states))
    self.state_value = tf.reduce_max(self._net_outputs.q_values, axis=1)[0]
    if self.summary_writer is not None:
      tf.summary.scalar('Eval/StateDistances', self.state_distances)
    if self.evaluate_metric_only:
      return

    self.s1_online_distances = self.online_bisimulation(
        self._concat_states(self._replay_net_outputs.representation))
    self.s2_target_distances = self.target_bisimulation(
        self._concat_states(
            self._replay_next_target_net_outputs.representation))
    # bisimulation_target = rew_diff + gamma * next_distance.
    bisimulation_target = tf.stop_gradient(self._build_bisimulation_target())
    # We zero-out diagonal entries, since those are estimating the distance
    # between a state and itself, which we know to be 0.
    diagonal_mask = 1.0 - tf.diag(tf.ones(self.batch_size, dtype=tf.float32))
    diagonal_mask = tf.reshape(diagonal_mask, (self.batch_size**2, 1))
    bisimulation_target *= diagonal_mask
    bisimulation_estimate = self.s1_online_distances
    bisimulation_loss = tf.losses.mean_squared_error(
        bisimulation_target,
        bisimulation_estimate)
    if self.summary_writer is not None:
      average_distance = tf.reduce_mean(bisimulation_estimate)
      average_target = tf.reduce_mean(bisimulation_target)
      average_next_state_dists = tf.reduce_mean(self.next_state_distances)
      tf.summary.scalar('Training/loss', bisimulation_loss)
      tf.summary.scalar('Training/AverageDistance', average_distance)
      tf.summary.scalar('Training/AverageTargetDistance', average_target)
      tf.summary.scalar('Training/AverageNextStateDistance',
                        average_next_state_dists)
      tf.summary.scalar('Training/BisimHorizon', self.bisim_horizon_ph)
      tf.summary.histogram('Training/OnlineDistance', bisimulation_estimate)
      tf.summary.histogram('Training/TargetDistance', bisimulation_target)
    self._train_bisim_op = self.bisim_optimizer.minimize(bisimulation_loss)
    self._bisim_sync_op = self._build_sync_op(online_scope='OnlineBisim',
                                              target_scope='TargetBisim')
    def forward_pass(self, state1, state2):
        """
            ### PROBLEM 3
            ### YOUR CODE HERE

            args:
                state1: tf variable
                state2: tf variable
            
            encoder1: tfp.distributions.MultivariateNormalDiag distribution
            encoder2: tfp.distributions.MultivariateNormalDiag distribution
            prior: tfp.distributions.MultivariateNormalDiag distribution
            discriminator: tfp.distributions.Bernoulli distribution

            TODO:
                1. z1: sample from encoder1
                2. z2: sample from encoder2
                3. z: concatenate z1 and z2

            Hint: 
                https://www.tensorflow.org/probability/api_docs/python/tfp/distributions
        """
        # Reuse
        make_encoder1 = tf.make_template('encoder1', self.make_encoder)
        make_encoder2 = tf.make_template('encoder2', self.make_encoder)
        make_discriminator = tf.make_template('decoder',
                                              self.make_discriminator)

        # Encoder
        encoder1 = make_encoder1(state1,
                                 self.hid_dim / 2,
                                 'z1',
                                 n_layers=2,
                                 hid_size=self.hid_dim)
        encoder2 = make_encoder2(state2,
                                 self.hid_dim / 2,
                                 'z2',
                                 n_layers=2,
                                 hid_size=self.hid_dim)

        # Prior
        prior = self.make_prior(self.hid_dim / 2)

        # Sampled Latent
        z1 = encoder1.sample()
        z2 = encoder2.sample()
        z = tf.concat([z1, z2], axis=1)

        # Discriminator
        discriminator = make_discriminator(z,
                                           1,
                                           'discriminator',
                                           n_layers=2,
                                           hid_size=self.hid_dim)
        return encoder1, encoder2, prior, discriminator
示例#5
0
  def __init__(self,
               sess,
               reward_scale,
               ipd_scale,
               observation_shape=NATURE_DQN_OBSERVATION_SHAPE,
               resize_shape=PSEUDO_COUNT_OBSERVATION_SHAPE,
               quantization_factor=PSEUDO_COUNT_QUANTIZATION_FACTOR,
               tf_device='/cpu:*',
               optimizer=tf.train.RMSPropOptimizer(
                   learning_rate=0.0001,
                   momentum=0.9,
                   epsilon=0.0001)):
    self._sess = sess
    self.reward_scale = reward_scale
    self.ipd_scale = ipd_scale
    self.observation_shape = observation_shape
    self.resize_shape = resize_shape
    self.quantization_factor = quantization_factor
    self.optimizer = optimizer

    with tf.device(tf_device), tf.name_scope('intrinsic_pixelcnn'):
      observation_shape = (1,) + observation_shape + (1,)
      self.obs_ph = tf.placeholder(tf.uint8, shape=observation_shape,
                                   name='obs_ph')
      self.preproccessed_obs = self._preprocess(self.obs_ph, resize_shape)
      self.iter_ph = tf.placeholder(tf.uint32, shape=[], name='iter_num')
      self.eval_ph = tf.placeholder(tf.bool, shape=[], name='eval_mode')
      self.network = tf.make_template('PixelCNN', self._network_template)
      self.ipd = tf.cond(tf.logical_not(self.eval_ph),
                         self.update,
                         self.virtual_update)
      self.reward = self.ipd_to_reward(self.ipd, self.iter_ph)
    def testMakeLogJointFnTemplate(self):
        """Test `make_log_joint_fn` on program returned by tf1.make_template."""
        def variational():
            loc = tf1.get_variable("loc", [])
            qz = ed.Normal(loc=loc, scale=0.5, name="qz")
            return qz

        def true_log_joint(loc, qz):
            log_prob = tf.reduce_sum(
                tfd.Normal(loc=loc, scale=0.5).log_prob(qz))
            return log_prob

        qz_value = 1.23
        variational_template = tf1.make_template("variational", variational)

        log_joint = ed.make_log_joint_fn(variational_template)
        expected_log_prob = log_joint(qz=qz_value)
        loc = tf1.trainable_variables("variational")[0]
        actual_log_prob = true_log_joint(loc, qz_value)

        with self.cached_session() as sess:
            sess.run(tf1.initialize_all_variables())
            actual_log_prob_, expected_log_prob_ = sess.run(
                [actual_log_prob, expected_log_prob])
            self.assertEqual(actual_log_prob_, expected_log_prob_)
示例#7
0
  def __init__(self, dummy_inputs, logit_axis, config):

    self.logit_axis = logit_axis
    self.config = config

    self.fc_sizes = getattr(config, 'fc_hid_sizes', []) + [len(logit_axis)]
    self.fc_init_factors = (
        getattr(config, 'fc_init_factors', []) + [config.output_init_factor])

    if not dummy_inputs:
      raise ValueError('network has size 0 input')
    if logit_axis.size == 0:
      raise ValueError('network has size 0 output')

    if len({
        len(self.fc_sizes), len(self.fc_init_factors), len(config.dropouts)
    }) != 1:
      raise ValueError('invalid hyperparameter config for fc layers')
    self.num_fc_layers = len(self.fc_sizes)

    self._conv_config = _ConvConfig(*[
        getattr(config, 'conv_' + field, []) for field in _ConvConfig._fields
    ])
    if len(set(map(len, self._conv_config))) != 1:
      raise ValueError('invalid hyperparameter config for conv layers')
    self.num_conv_layers = len(self._conv_config.depths)

    self.fprop = tf.make_template('feedforward', self._fprop)
    # create variables
    self.fprop(dummy_inputs, mode='test')
    self.params = contrib_framework.get_variables(
        scope=self.fprop.variable_scope.name)
    def testBijectorConditionKwargs(self):
        batch_size = 3
        x_ = np.linspace(-1.0, 1.0,
                         (batch_size * 4 * 2)).astype(np.float32).reshape(
                             (batch_size, 4 * 2))

        conditions = {
            'a': tf.random.normal((batch_size, 4), dtype=tf.float32, seed=584),
            'b': tf.random.normal((batch_size, 2), dtype=tf.float32,
                                  seed=9817),
        }

        def _condition_shift_and_log_scale_fn(x0, output_units, a, b):
            x = tf.concat((x0, a, b), axis=-1)
            out = tf1.layers.dense(inputs=x, units=2 * output_units)
            shift, log_scale = tf.split(out, 2, axis=-1)
            return shift, log_scale

        condition_shift_and_log_scale_fn = tf1.make_template(
            'real_nvp_condition_template', _condition_shift_and_log_scale_fn)

        nvp = tfb.RealNVP(
            num_masked=4,
            validate_args=True,
            is_constant_jacobian=False,
            shift_and_log_scale_fn=condition_shift_and_log_scale_fn)

        x = tf.constant(x_)

        forward_x = nvp.forward(x, **conditions)
        # Use identity to invalidate cache.
        inverse_y = nvp.inverse(tf.identity(forward_x), **conditions)
        forward_inverse_y = nvp.forward(inverse_y, **conditions)
        fldj = nvp.forward_log_det_jacobian(x, event_ndims=1, **conditions)
        # Use identity to invalidate cache.
        ildj = nvp.inverse_log_det_jacobian(tf.identity(forward_x),
                                            event_ndims=1,
                                            **conditions)
        self.evaluate(tf1.global_variables_initializer())
        [
            forward_x_,
            inverse_y_,
            forward_inverse_y_,
            ildj_,
            fldj_,
        ] = self.evaluate([
            forward_x,
            inverse_y,
            forward_inverse_y,
            ildj,
            fldj,
        ])
        self.assertStartsWith(nvp.name, 'real_nvp')
        self.assertAllClose(forward_x_,
                            forward_inverse_y_,
                            rtol=1e-5,
                            atol=1e-5)
        self.assertAllClose(x_, inverse_y_, rtol=1e-5, atol=1e-5)
        self.assertAllClose(ildj_, -fldj_, rtol=1e-5, atol=1e-5)
示例#9
0
    def make_encoder(encoder_cfg, name):
        def call_encoder(inputs, length):
            return sequence_encoder(inputs=inputs,
                                    length=length,
                                    is_training=is_training,
                                    cfg=encoder_cfg)

        return tf.make_template(name, call_encoder)
示例#10
0
def real_nvp_template(neuron_list,name=None):
    with tf.name_scope(name or 'real_nvp_template'):
          
        def _fn(x,output_units,**condition_kwargs):
            for neurons in neuron_list:
                x = tf1.layers.dense(x,neurons)
                x = tf.nn.relu(x)
            x = tf1.layers.dense(x,2*output_units)
            
            shift, logscale = tf.split(x, 2, axis=-1)
            return shift, logscale
    
    return tf1.make_template('real_nvp_template', _fn)
示例#11
0
 def __init__(self,
              stoch_size=30,
              deter_size=200,
              min_stddev=0.1,
              layers=1,
              reward_layers=3,
              units=300,
              free_nats=3.0,
              reward_loss_multiplier=10,
              frame_size=(64, 64, 3),
              task=gin.REQUIRED,
              reward_from_frames=False,
              reward_stop_gradient=False,
              include_frames_in_prediction=False,
              activation=tf.nn.relu):
     self._action_space = task.create_env().action_space
     self._stoch_size = stoch_size
     self._deter_size = deter_size
     self._min_stddev = min_stddev
     self._num_layers = layers
     self._num_reward_layers = reward_layers
     self._num_units = units
     self._free_nats = free_nats
     self._include_frames_in_prediction = include_frames_in_prediction
     self._activation = activation
     self._cell = tf.keras.layers.GRUCell(self._deter_size)
     self._prior_tpl = tf.make_template('prior', self._prior)
     self._posterior_tpl = tf.make_template('posterior', self._posterior)
     self._encoder_tpl = tf.make_template('encoder', self._encoder)
     self._reward_loss_mul = reward_loss_multiplier
     self._frame_size = list(frame_size)
     self._reward_from_frames = reward_from_frames
     self._reward_stop_gradient = reward_stop_gradient
     self._predict_frames_tpl = tf.make_template('predict_frames',
                                                 self._predict_frames,
                                                 out_shape=self._frame_size)
     self._predict_reward_tpl = tf.make_template('predict_reward',
                                                 self._predict_reward,
                                                 out_shape=[1])
示例#12
0
    def Wrapper(template_name, **kwargs):
        # Do a bit of hackery with scopes so that the current config scope used when
        # constructing the template is also used when the template is instantiated.
        saved_scopes = gin.current_scope()

        def GinWrapper(*args, **kwargs):
            with gin.config_scope(saved_scopes):
                return function(*args, **kwargs)

        return tf.make_template(template_name,
                                GinWrapper,
                                create_scope_now_=True,
                                unique_name_=template_name,
                                **kwargs)
示例#13
0
def _make_gated_bijector_fn():
  def _bijector_fn(x, output_units):
    if tensorshape_util.rank(x.shape) == 1:
      x = x[tf.newaxis, ...]
      reshape_output = lambda x: x[0]
    else:
      reshape_output = lambda x: x

    out = tf1.layers.dense(inputs=x, units=2 * output_units)
    shift, logit_gate = tf.split(out, 2, axis=-1)
    shift = reshape_output(shift)
    logit_gate = reshape_output(logit_gate)
    gate = tf.nn.sigmoid(logit_gate)
    return tfb.AffineScalar(shift=(1. - gate) * shift, scale=gate)
  return tf1.make_template('gated_bijector', _bijector_fn)
示例#14
0
    def init_networks(self):
        network_image_size = self.image_size

        if self.data_format == 'channels_first':
            data_generator_entries = OrderedDict([('image', [1] + network_image_size)])
        else:
            data_generator_entries = OrderedDict([('image', network_image_size + [1])])

        # create model with shared weights between train and val
        training_net = tf.make_template('net', self.network)

        # build val graph
        val_placeholders = create_placeholders(data_generator_entries, shape_prefix=[1])
        self.data_val = val_placeholders['image']
        self.prediction_val, self.local_prediction_val, self.spatial_prediction_val = training_net(self.data_val, num_labels=self.num_labels, is_training=False, data_format=self.data_format)
        self.prediction_softmax_val = tf.nn.softmax(self.prediction_val, axis=1 if self.data_format == 'channels_first' else 4)
def real_nvp_default_template(
        hidden_layers,
        shift_only=False,
        activation=tf.nn.relu,
        name=None,
        *args,  # pylint: disable=keyword-arg-before-vararg
        **kwargs):
    with tf.compat.v1.name_scope(name or 'real_nvp_default_template'):

        def _fn(x, output_units, **condition_kwargs):
            """Fully connected MLP parameterized via `real_nvp_template`."""
            if condition_kwargs:
                raise NotImplementedError(
                    'Conditioning not implemented in the default template.')

            if tensorshape_util.rank(x.shape) == 1:
                x = x[tf.newaxis, ...]
                reshape_output = lambda x: x[0]
            else:
                reshape_output = lambda x: x
            for units in hidden_layers:
                x = tf1.layers.dense(
                    inputs=x,
                    units=units,
                    activation=activation,
                    *args,  # pylint: disable=keyword-arg-before-vararg
                    **kwargs)
            x = tf1.layers.dense(
                inputs=x,
                units=(1 if shift_only else 2) * output_units,
                activation=None,
                *args,  # pylint: disable=keyword-arg-before-vararg
                **kwargs)
            if shift_only:
                return reshape_output(x), None
            shift, log_scale = tf.split(x, 2, axis=-1)
            # ** Here is the second modification.
            return reshape_output(shift), 1e-7 + tf.nn.softplus(
                reshape_output(log_scale))

        return tf1.make_template('real_nvp_default_template', _fn)
示例#16
0
文件: lm.py 项目: yyht/lamb
        def make_conditioning():
            if config.embed_once:
                with tf.variable_scope('cond_im',
                                       initializer=embedding_initializer):
                    embedding = tf.get_variable(
                        'embedding', [
                            config.conditioning_vocab_size,
                            config.input_embedding_size
                        ],
                        initializer=embedding_initializer,
                        dtype=tf.float32)
                    if self.embedding_dropout is not None:
                        embedding = tf.nn.dropout(
                            embedding,
                            1 - self.embedding_dropout,
                            noise_shape=tf.stack(
                                [config.conditioning_vocab_size, 1]))
                    embedded_source = tf.nn.embedding_lookup(
                        embedding, self.conditioning)
                    if self.token_dropout is not None:
                        embedding = tf.nn.dropout(embedding,
                                                  1 - self.token_dropout,
                                                  noise_shape=tf.stack([
                                                      config.max_time_steps,
                                                      batch_size, 1
                                                  ]))
                    if config.scale_input_embeddings:
                        embedded_source *= tf.sqrt(
                            tf.cast(config.input_embedding_size, tf.float32))
                    conditioning_sources = embedded_source
            else:
                assert False, 'Not implemented.'

            conditioning_cell = make_cell()
            conditioning_lm = tf.make_template('cond_lm', lm_1)
            initial_state = conditioning_cell.zero_state(batch_size,
                                                         dtype=tf.float32)
            _, conditioning_last_state = conditioning_lm(
                conditioning_cell, initial_state, conditioning_sources,
                self.conditioning_len)
            return conditioning_last_state
示例#17
0
    def __init__(self, batch_env, step, is_training, should_log, config):
        """Create an instance of the PPO algorithm.

    Args:
      batch_env: In-graph batch environment.
      step: Integer tensor holding the current training step.
      is_training: Boolean tensor for whether the algorithm should train.
      should_log: Boolean tensor for whether summaries should be returned.
      config: Object containing the agents configuration as attributes.
    """
        self._batch_env = batch_env
        self._step = step
        self._is_training = is_training
        self._should_log = should_log
        self._config = config
        self._observ_filter = normalize.StreamingNormalize(
            self._batch_env.observ[0],
            center=True,
            scale=True,
            clip=5,
            name='normalize_observ')
        self._reward_filter = normalize.StreamingNormalize(
            self._batch_env.reward[0],
            center=False,
            scale=True,
            clip=10,
            name='normalize_reward')
        # Memory stores tuple of observ, action, mean, logstd, reward.
        template = (self._batch_env.observ[0], self._batch_env.action[0],
                    self._batch_env.action[0], self._batch_env.action[0],
                    self._batch_env.reward[0])
        self._memory = memory.EpisodeMemory(template, config.update_every,
                                            config.max_length, 'memory')
        self._memory_index = tf.Variable(0, False)
        use_gpu = self._config.use_gpu and utility.available_gpus()
        with tf.device('/gpu:0' if use_gpu else '/cpu:0'):
            # Create network variables for later calls to reuse.
            action_size = self._batch_env.action.shape[1].value
            self._network = tf.make_template(
                'network',
                functools.partial(config.network, config, action_size))
            output = self._network(
                tf.zeros_like(self._batch_env.observ)[:, None],
                tf.ones(len(self._batch_env)))
            with tf.variable_scope('ppo_temporary'):
                self._episodes = memory.EpisodeMemory(template, len(batch_env),
                                                      config.max_length,
                                                      'episodes')
                if output.state is None:
                    self._last_state = None
                else:
                    # Ensure the batch dimension is set.
                    tf.contrib.framework.nest.map_structure(
                        lambda x: x.set_shape([len(batch_env)] + x.shape.
                                              as_list()[1:]), output.state)
                    # pylint: disable=undefined-variable
                    self._last_state = tf.contrib.framework.nest.map_structure(
                        lambda x: tf.Variable(lambda: tf.zeros_like(x), False),
                        output.state)
                self._last_action = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_action')
                self._last_mean = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                              False,
                                              name='last_mean')
                self._last_logstd = tf.Variable(tf.zeros_like(
                    self._batch_env.action),
                                                False,
                                                name='last_logstd')
        self._penalty = tf.Variable(self._config.kl_init_penalty,
                                    False,
                                    dtype=tf.float32)
        self._optimizer = self._config.optimizer(self._config.learning_rate)
示例#18
0
#     ys = [tf.placeholder(tf.int32, shape=(args.batch_size,)) for i in range(args.nr_gpu)]
#     hs = [tf.one_hot(ys[i], num_labels) for i in range(args.nr_gpu)]
# else:
h_init = None
h_sample = [None] * args.nr_gpu
hs = h_sample

# create the model
model_opt = {
    'nr_resnet': args.nr_resnet,
    'nr_filters': args.nr_filters,
    'nr_logistic_mix': args.nr_logistic_mix,
    'resnet_nonlinearity': args.resnet_nonlinearity,
    'energy_distance': args.energy_distance
}
model = tf.make_template('model', model_spec)

# run once for data dependent initialization of parameters
init_pass = model(x_init,
                  h_init,
                  init=True,
                  dropout_p=args.dropout_p,
                  **model_opt)

# keep track of moving average
# all_params = tf.trainable_variables()
# ema = tf.train.ExponentialMovingAverage(decay=args.polyak_decay)
# maintain_averages_op = tf.group(ema.apply(all_params))
# ema_params = [ema.average(p) for p in all_params]

# get loss gradients over multiple GPUs + sampling
示例#19
0
def fit_with_hmc(model,
                 observed_time_series,
                 num_results=100,
                 num_warmup_steps=50,
                 num_leapfrog_steps=15,
                 initial_state=None,
                 initial_step_size=None,
                 chain_batch_shape=(),
                 num_variational_steps=150,
                 variational_optimizer=None,
                 seed=None,
                 name=None):
    """Draw posterior samples using Hamiltonian Monte Carlo (HMC).

  Markov chain Monte Carlo (MCMC) methods are considered the gold standard of
  Bayesian inference; under suitable conditions and in the limit of infinitely
  many draws they generate samples from the true posterior distribution. HMC [1]
  uses gradients of the model's log-density function to propose samples,
  allowing it to exploit posterior geometry. However, it is computationally more
  expensive than variational inference and relatively sensitive to tuning.

  This method attempts to provide a sensible default approach for fitting
  StructuralTimeSeries models using HMC. It first runs variational inference as
  a fast posterior approximation, and initializes the HMC sampler from the
  variational posterior, using the posterior standard deviations to set
  per-variable step sizes (equivalently, a diagonal mass matrix). During the
  warmup phase, it adapts the step size to target an acceptance rate of 0.75,
  which is thought to be in the desirable range for optimal mixing [2].


  Args:
    model: An instance of `StructuralTimeSeries` representing a
      time-series model. This represents a joint distribution over
      time-series and their parameters with batch shape `[b1, ..., bN]`.
    observed_time_series: `float` `Tensor` of shape
      `concat([sample_shape, model.batch_shape, [num_timesteps, 1]]) where
      `sample_shape` corresponds to i.i.d. observations, and the trailing `[1]`
      dimension may (optionally) be omitted if `num_timesteps > 1`. May
      optionally be an instance of `tfp.sts.MaskedTimeSeries`, which includes
      a mask `Tensor` to specify timesteps with missing observations.
    num_results: Integer number of Markov chain draws.
      Default value: `100`.
    num_warmup_steps: Integer number of steps to take before starting to
      collect results. The warmup steps are also used to adapt the step size
      towards a target acceptance rate of 0.75.
      Default value: `50`.
    num_leapfrog_steps: Integer number of steps to run the leapfrog integrator
      for. Total progress per HMC step is roughly proportional to
      `step_size * num_leapfrog_steps`.
      Default value: `15`.
    initial_state: Optional Python `list` of `Tensor`s, one for each model
      parameter, representing the initial state(s) of the Markov chain(s). These
      should have shape `concat([chain_batch_shape, param.prior.batch_shape,
      param.prior.event_shape])`. If `None`, the initial state is set
      automatically using a sample from a variational posterior.
      Default value: `None`.
    initial_step_size: Python `list` of `Tensor`s, one for each model parameter,
      representing the step size for the leapfrog integrator. Must
      broadcast with the shape of `initial_state`. Larger step sizes lead to
      faster progress, but too-large step sizes make rejection exponentially
      more likely. If `None`, the step size is set automatically using the
      standard deviation of a variational posterior.
      Default value: `None`.
    chain_batch_shape: Batch shape (Python `tuple`, `list`, or `int`) of chains
      to run in parallel.
      Default value: `[]` (i.e., a single chain).
    num_variational_steps: Python `int` number of steps to run the variational
      optimization to determine the initial state and step sizes.
      Default value: `150`.
    variational_optimizer: Optional `tf.train.Optimizer` instance to use in
      the variational optimization. If `None`, defaults to
      `tf.train.AdamOptimizer(0.1)`.
      Default value: `None`.
    seed: Python integer to seed the random number generator.
    name: Python `str` name prefixed to ops created by this function.
      Default value: `None` (i.e., 'fit_with_hmc').

  Returns:
    samples: Python `list` of `Tensors` representing posterior samples of model
      parameters, with shapes `[concat([[num_results], chain_batch_shape,
      param.prior.batch_shape, param.prior.event_shape]) for param in
      model.parameters]`.
    kernel_results: A (possibly nested) `tuple`, `namedtuple` or `list` of
      `Tensor`s representing internal calculations made within the HMC sampler.

  #### Examples

  Assume we've built a structural time-series model:

  ```python
    day_of_week = tfp.sts.Seasonal(
        num_seasons=7,
        observed_time_series=observed_time_series,
        name='day_of_week')
    local_linear_trend = tfp.sts.LocalLinearTrend(
        observed_time_series=observed_time_series,
        name='local_linear_trend')
    model = tfp.sts.Sum(components=[day_of_week, local_linear_trend],
                        observed_time_series=observed_time_series)
  ```

  To draw posterior samples using HMC under default settings:

  ```python
  samples, kernel_results = tfp.sts.fit_with_hmc(model, observed_time_series)

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    samples_, kernel_results_ = sess.run((samples, kernel_results))

  print("acceptance rate: {}".format(
    np.mean(kernel_results_.inner_results.is_accepted, axis=0)))
  print("posterior means: {}".format(
    {param.name: np.mean(param_draws, axis=0)
     for (param, param_draws) in zip(model.parameters, samples_)}))
  ```

  We can also run multiple chains. This may help diagnose convergence issues
  and allows us to exploit vectorization to draw samples more quickly, although
  warmup still requires the same number of sequential steps.

  ```python
  from matplotlib import pylab as plt

  samples, kernel_results = tfp.sts.fit_with_hmc(
    model, observed_time_series, chain_batch_shape=[10])

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    samples_, kernel_results_ = sess.run((samples, kernel_results))

  print("acceptance rate: {}".format(
    np.mean(kernel_results_.inner_results.inner_results.is_accepted, axis=0)))

  # Plot the sampled traces for each parameter. If the chains have mixed, their
  # traces should all cover the same region of state space, frequently crossing
  # over each other.
  for (param, param_draws) in zip(model.parameters, samples_):
    if param.prior.event_shape.ndims > 0:
      print("Only plotting traces for scalar parameters, skipping {}".format(
        param.name))
      continue
    plt.figure(figsize=[10, 4])
    plt.title(param.name)
    plt.plot(param_draws)
    plt.ylabel(param.name)
    plt.xlabel("HMC step")

  # Combining the samples from multiple chains into a single dimension allows
  # us to easily pass sampled parameters to downstream forecasting methods.
  combined_samples_ = [np.reshape(param_draws,
                                  [-1] + list(param_draws.shape[2:]))
                       for param_draws in samples_]
  ```

  For greater flexibility, you may prefer to implement your own sampler using
  the TensorFlow Probability primitives in `tfp.mcmc`. The following recipe
  constructs a basic HMC sampler, using a `TransformedTransitionKernel` to
  incorporate constraints on the parameter space.

  ```python
  transformed_hmc_kernel = mcmc.TransformedTransitionKernel(
      inner_kernel=mcmc.SimpleStepSizeAdaptation(
          inner_kernel=mcmc.HamiltonianMonteCarlo(
              target_log_prob_fn=model.joint_log_prob(observed_time_series),
              step_size=step_size,
              num_leapfrog_steps=num_leapfrog_steps,
              state_gradients_are_stopped=True,
              seed=seed),
          num_adaptation_steps = int(0.8 * num_warmup_steps)),
      bijector=[param.bijector for param in model.parameters])

  # Initialize from a Uniform[-2, 2] distribution in unconstrained space.
  initial_state = [tfp.sts.sample_uniform_initial_state(
    param, return_constrained=True) for param in model.parameters]

  samples, kernel_results = tfp.mcmc.sample_chain(
    kernel=transformed_hmc_kernel,
    num_results=num_results,
    current_state=initial_state,
    num_burnin_steps=num_warmup_steps)
  ```

  #### References

  [1]: Radford Neal. MCMC Using Hamiltonian Dynamics. _Handbook of Markov Chain
       Monte Carlo_, 2011. https://arxiv.org/abs/1206.1901
  [2]  M.J. Betancourt, Simon Byrne, and Mark Girolami. Optimizing The
       Integrator Step Size for Hamiltonian Monte Carlo.
       https://arxiv.org/abs/1411.6669

  """
    with tf.name_scope(name or 'fit_with_hmc') as name:
        seed = tfd.SeedStream(seed, salt='StructuralTimeSeries_fit_with_hmc')

        # Initialize state and step sizes from a variational posterior if not
        # specified.
        if initial_step_size is None or initial_state is None:

            # To avoid threading variational distributions through the training
            # while loop, we build our own copy here. `make_template` ensures
            # that our variational distributions share the optimized parameters.
            def make_variational():
                return build_factored_variational_loss(
                    model,
                    observed_time_series,
                    init_batch_shape=chain_batch_shape,
                    seed=seed())

            make_variational = tf1.make_template('make_variational',
                                                 make_variational)
            _, variational_distributions = make_variational()
            minimize_op = _minimize_in_graph(
                build_loss_fn=lambda: make_variational()[
                    0],  # return just the loss.
                num_steps=num_variational_steps,
                optimizer=variational_optimizer)

            with tf.control_dependencies([minimize_op]):
                if initial_state is None:
                    initial_state = [
                        tf.stop_gradient(d.sample())
                        for d in variational_distributions.values()
                    ]

                # Set step sizes using the unconstrained variational distribution.
                if initial_step_size is None:
                    initial_step_size = [
                        transformed_q.distribution.stddev() for transformed_q
                        in variational_distributions.values()
                    ]

        # Multiple chains manifest as an extra param batch dimension, so we need to
        # add a corresponding batch dimension to `observed_time_series`.
        observed_time_series = sts_util.pad_batch_dimension_for_multiple_chains(
            observed_time_series, model, chain_batch_shape=chain_batch_shape)

        # Run HMC to sample from the posterior on parameters.
        samples, kernel_results = mcmc.sample_chain(
            num_results=num_results,
            current_state=initial_state,
            num_burnin_steps=num_warmup_steps,
            kernel=mcmc.SimpleStepSizeAdaptation(
                inner_kernel=mcmc.TransformedTransitionKernel(
                    inner_kernel=mcmc.HamiltonianMonteCarlo(
                        target_log_prob_fn=model.joint_log_prob(
                            observed_time_series),
                        step_size=initial_step_size,
                        num_leapfrog_steps=num_leapfrog_steps,
                        state_gradients_are_stopped=True,
                        seed=seed()),
                    bijector=[param.bijector for param in model.parameters]),
                num_adaptation_steps=int(num_warmup_steps * 0.8),
                adaptation_rate=tf.convert_to_tensor(
                    value=0.1, dtype=initial_state[0].dtype)),
            parallel_iterations=1 if seed is not None else 10)

        return samples, kernel_results
def fit(net,
        upsample_factor,
        channels_times_layers,
        img_shape,
        image_mode,
        decoder_type,
        upsample_mode,
        filter_size,
        img_name,
        type_measurements,
        num_measurements,
        num_channels_real,
        num_layers,
        act_function,
        y_feed,
        A_feed,
        mask_info1,
        mask_info2,
        mask_feed=None,
        lr_decay_epoch=0,
        lr_decay_rate=0.65,
        LR=0.01,
        OPTIMIZER='adam',
        num_iter=5000,
        find_best=False,
        verbose=False,
        input_size=128,
        random_vector=None,
        selection_mask=None,
        save=False,
        random_array=None):
    """Fit a model.
    
        Args: 
        net: the generative model
        channels_times_layers: Number of upsample channels #e.g.[k, k ,...] with shape of [1,6]
        img_shape: original real image shape, a 4D tensor, e.g. [1,128,128,3] 
        type_measurements, num_measurements: the type and number of measurements 
        y_feed, A_feed: real oberservation y and measurment matrix A
        LR, lr_decay_epoch, lr_decay_rate: parameters of learning rate 
        device: device name 
        
    """

    with tf.Graph().as_default():
        # Global step
        global_step = tf.train.get_or_create_global_step()

        # Set up palceholders
        if mask_feed is None:
            n_input = img_shape[1] * img_shape[2] * img_shape[3]
            if type_measurements == 'random':  #compressed sensing with random matirx
                A = tf.placeholder(tf.float32,
                                   shape=(n_input, num_measurements),
                                   name='A')  #e.g.[img_wid*img_high*3, 200]
                y = tf.placeholder(tf.float32,
                                   shape=(1, num_measurements),
                                   name='y')  #e.g.[1, 200]
            elif type_measurements == 'identity':  #denosing
                if image_mode != '3D':
                    A = tf.placeholder(
                        tf.float32, shape=(n_input, n_input), name='A'
                    )  #e.g.[img_wid*img_high*3, img_wid*img_high*3]   ########!!!!!!#####!!!!!!!
                y = tf.placeholder(tf.float32, shape=(1, n_input),
                                   name='y')  #e.g.[1, img_wid*img_high*3]
            elif type_measurements == 'circulant':  #compressed sensing with circulant matirx
                y = tf.placeholder(tf.float32, shape=(1, n_input),
                                   name='y')  #e.g.[1, img_wid*img_high*3]
        else:  #inpainting
            y = tf.placeholder(tf.float32,
                               shape=(1, img_shape[1], img_shape[2],
                                      img_shape[3]),
                               name='y')

        # Define input uniform noise
        if upsample_mode == 'bilinear':
            ## -- fix output size only --##
            #totalupsample = upsample_factor**len(num_layers) #e.g. 2^6, 1.5^3
            #width = int(img_shape[1] / totalupsample)
            #if image_mode == '1D':
            #    height = int(img_shape[2])
            #elif image_mode == '2D' or '3D':
            #    height = int(img_shape[2] / totalupsample)

            ## -- fix input size and output size--: ##
            width = input_size
            if image_mode == '1D':
                height = int(img_shape[2])
            elif image_mode == '2D' or image_mode == '3D':
                height = input_size
            #print('9/11 input noise check, width: {} height:{}'.format(width, height))
        elif upsample_mode == 'none':
            width = int(img_shape[1])
            height = int(img_shape[2])
        z = tf.constant(
            np.random.uniform(
                size=[1, width, height, channels_times_layers[0]]).astype(
                    np.float32) * 1. / 10)
        z = tf.Variable(z, name='z', trainable=False)

        # Deep decoder prior
        feed_forward = tf.make_template(
            "DeepDecoder", net
        )  #feed_forward takes a 4D Tensor (batch, width, height, channels) as input and outputs a 4D Tensor (batch, width*2^6, height*2^6, channels=3)
        x = feed_forward(z)  #net_output with shape [1, img_wid, img_high, 3]

        # Inverse problem settings
        def circulant_tf(signal_vector, random_vector, selection_mask):
            signal_vector = tf.cast(signal_vector,
                                    dtype=tf.complex64,
                                    name='circulant_real2complex')
            t = tf.convert_to_tensor(random_vector, dtype=tf.complex64)
            #step 1: F^{-1} @ x
            r1 = tf.signal.ifft(signal_vector, name='circulant_step1_ifft')
            #step 2: Diag() @ F^{-1} @ x
            Ft = tf.signal.fft(t)
            r2 = tf.multiply(r1, Ft, name='circulant_step2_diag')
            #step 3: F @ Diag() @ F^{-1} @ x
            compressive = tf.signal.fft(r2, name='circulant_step3_fft')
            float_compressive = tf.cast(compressive,
                                        tf.float32,
                                        name='circulant_complex2real')
            #step 4: R_{omega} @ C_{t}
            select_compressive = tf.multiply(float_compressive,
                                             selection_mask,
                                             name='circulant_step4_A')
            return select_compressive

        if mask_feed is None:  # Compressed sensing & Denoising
            if type_measurements == 'circulant':  # Compressed sensing with Circulant matrix
                flip = tf.convert_to_tensor(random_array,
                                            dtype=tf.float32)  # flip
                x_circulant = tf.reshape(x, [1, -1]) * flip
                y_hat = circulant_tf(x_circulant, random_vector,
                                     selection_mask)
            else:  # Compressed sensing with Random matrix & Denoising
                if image_mode != '3D':
                    y_hat = tf.matmul(tf.reshape(x, [1, -1]), A)
                else:
                    y_hat = tf.reshape(x, [1, -1])  ########!!!!!!#####!!!!!!!
        else:
            # Inpainting
            y_hat = x * mask_feed

        # Define loss
        mse = tf.losses.mean_squared_error
        loss = mse(y, y_hat)

        # Define learning rate
        if lr_decay_epoch > 0:
            LR = tf.train.exponential_decay(LR,
                                            global_step,
                                            lr_decay_epoch,
                                            lr_decay_rate,
                                            staircase=True)

        # Define optimizer
        if OPTIMIZER == 'adam':
            #print("optimize with adam", LR)
            optimizer = tf.train.AdamOptimizer(LR)
        elif OPTIMIZER == 'LBFGS':
            raise NotImplementedError('LBFGS Optimizer')

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(loss, global_step=global_step)

        # Set up gpu
        config = tf.ConfigProto()
        config.gpu_options.per_process_gpu_memory_fraction = 0.85
        config.log_device_placement = True

        with tf.Session() as sess:
            # Init
            mse = [0.] * num_iter
            sess.run(tf.global_variables_initializer())

            # Initial deep decoder output
            if find_best:
                if not os.path.exists('log'):
                    os.makedirs('log/')
                if not os.path.exists('result'):
                    os.makedirs('result/')
                #saver = tf.train.Saver(max_to_keep=1)
                #saver.save(sess, os.path.join('log/', 'model.ckpt'), global_step=0)
                best_mse = 1000000.0
                best_img = sess.run(x)
                #save_img(best_img, 'result/', img_name, '0', image_mode, decoder_type, filter_size, upsample_mode)

            # Feed dict
            if mask_feed is None:
                if type_measurements == 'circulant':
                    feed_dict = {y: y_feed}
                elif type_measurements == 'identity':
                    if image_mode != '3D':
                        feed_dict = {
                            A: A_feed,
                            y: y_feed
                        }  ########!!!!!!#####!!!!!!!
                    else:
                        feed_dict = {y: y_feed}
            else:
                feed_dict = {y: y_feed}

            # Desired noised/masked output
            #y_recov = sess.run(y, feed_dict=feed_dict)
            #y_name = 'y_recov_ini' + '_' + decoder_type + '_' + str(filter_size) + '.npy'
            #imsave(os.path.join('result/', y_name), y_recov.astype(np.uint8))

            # Optimize
            num_params = get_num_params()
            sess.graph.finalize()
            #print('\x1b[37mFinal graph size: %.2f MB\x1b[0m' % (tf.get_default_graph().as_graph_def().ByteSize() / 10e6))

            for i in range(num_iter):
                loss_, _ = sess.run([loss, train_op], feed_dict=feed_dict)
                #psnr = 10 * np.log10(1 * 1 / loss_) #PSNR
                mse[i] = loss_

                # Display
                #if i > 0 and i % 100 == 0:
                #    print ('\r[Iteration %05d] loss=%.9f' % (i, loss_), end='')

                # Best net
                if find_best and best_mse > 1.005 * loss_:
                    best_mse = loss_
                    #best_psnr = 10 * np.log10(1 * 1 / best_mse)
                    best_img = sess.run(x)
                    #saver.save(sess, os.path.join('log/', 'model.ckpt'), global_step=i + 1)

            # Return final image or best found so far if `find_best`
            if find_best:
                out_img = best_img
                # if image_mode == '1D':
                #     mask_info = mask_info1[8:-4]
                # elif image_mode == '2D' or image_mode == '3D':
                #     mask_info = mask_info2[8:-4]
                #if save:
                #    save_img(out_img, 'result/', img_name, '{}'.format(i + 1), image_mode, decoder_type, filter_size, upsample_mode, num_channels_real, num_layers, input_size, mask_info, act_function)
                #print('Best MSE (wrt noisy) {}: {}: {}: {}: {}: {}: {}: {}: {}'.format(num_channels_real, num_layers, img_name, mask_info, decoder_type, filter_size, upsample_mode, upsample_factor, best_mse))
            else:
                out_img = sess.run(x)
                # if image_mode == '1D':
                #     mask_info = mask_info1[8:-4]
                # elif image_mode == '2D' or image_mode == '3D':
                #     mask_info = mask_info2[8:-4]
                #if save:
                #    save_img(out_img, 'result/', img_name, '{}'.format(i + 1), image_mode, decoder_type, filter_size, upsample_mode, num_channels_real, num_layers, input_size, mask_info, act_function)
                #print('FINAL MSE (wrt noisy) {}: {}: {}: {}: {}: {}: {}: {}: {}'.format(num_channels_real, num_layers, img_name, mask_info, decoder_type, filter_size, upsample_mode, upsample_factor, mse[-1]))
            if verbose:
                return mse, out_img, num_params
            else:
                return mse, out_img
示例#21
0
    def __init__(self,
                 train_batch_size=4096,
                 test_chain_batch_size=4096,
                 bijector="iaf",
                 log_dir="/tmp/neutra",
                 base_learning_rate=1e-3,
                 q_base_scale=1.,
                 learning_rate_schedule=[[6000, 1e-1]]):
        target, target_spec = GetTargetSpec()
        self.target = target
        self.target_spec = target_spec
        with gin.config_scope("train"):
            train_target, train_target_spec = GetTargetSpec()
            self.train_target = train_target
            self.train_target_spec = train_target_spec

        if bijector == "rnvp":
            bijector_fn = tf.make_template("bijector",
                                           MakeRNVPBijectorFn,
                                           num_dims=self.target_spec.num_dims)
        elif bijector == "iaf":
            bijector_fn = tf.make_template("bijector",
                                           MakeIAFBijectorFn,
                                           num_dims=self.target_spec.num_dims)
        elif bijector == "affine":
            bijector_fn = tf.make_template("bijector",
                                           MakeAffineBijectorFn,
                                           num_dims=self.target_spec.num_dims)
        else:
            bijector_fn = lambda *args, **kwargs: tfb.Identity()

        self.train_bijector = bijector_fn(train=True)
        self.bijector = bijector_fn(train=False)
        if train_target_spec.bijector is not None:
            print("Using train target bijector")
            self.train_bijector = tfb.Chain(
                [train_target_spec.bijector, self.train_bijector])
        if target_spec.bijector is not None:
            print("Using target bijector")
            self.bijector = tfb.Chain([target_spec.bijector, self.bijector])

        q_base = tfd.Independent(
            tfd.Normal(loc=tf.zeros(self.target_spec.num_dims),
                       scale=q_base_scale *
                       tf.ones(self.target_spec.num_dims)), 1)
        self.q_x_train = tfd.TransformedDistribution(q_base,
                                                     self.train_bijector)
        self.q_x = tfd.TransformedDistribution(q_base, self.bijector)

        # Params
        self.train_batch_size = int(train_batch_size)
        self.test_chain_batch_size = tf.placeholder_with_default(
            test_chain_batch_size, [], "test_chain_batch_size")
        self.test_batch_size = tf.placeholder_with_default(
            16384 * 8, [], "test_batch_size")
        self.test_num_steps = tf.placeholder_with_default(
            1000, [], "test_num_steps")
        self.test_num_leapfrog_steps = tf.placeholder_with_default(
            tf.to_int32(2), [], "test_num_leapfrog_steps")
        self.test_step_size = tf.placeholder_with_default(
            0.1, [], "test_step_size")

        # Test
        self.neutra_outputs = MakeNeuTra(
            target=self.target,
            q=self.q_x,
            batch_size=self.test_chain_batch_size,
            num_steps=self.test_num_steps,
            num_leapfrog_steps=self.test_num_leapfrog_steps,
            step_size=self.test_step_size,
        )
        self.z_chain = tf.reshape(
            self.bijector.inverse(
                tf.reshape(self.neutra_outputs.x_chain,
                           [-1, self.target_spec.num_dims])),
            tf.shape(self.neutra_outputs.x_chain))
        self.target_samples = self.target.sample(self.test_batch_size)
        self.target_z = self.bijector.inverse(self.target_samples)
        self.q_samples = self.q_x.sample(self.test_batch_size)

        self.target_cov = utils.Covariance(self.target_samples)
        self.target_eigvals, self.target_eigvecs = tf.linalg.eigh(
            self.target_cov)

        self.cached_target_eigvals = tf.get_local_variable(
            "cached_target_eigvals",
            self.target_eigvals.shape,
            initializer=tf.zeros_initializer())
        self.cached_target_eigvecs = tf.get_local_variable(
            "cached_target_eigvecs",
            self.target_eigvecs.shape,
            initializer=tf.zeros_initializer())
        self.cached_target_stats_update_op = [
            self.cached_target_eigvals.assign(self.target_eigvals),
            self.cached_target_eigvecs.assign(self.target_eigvecs),
            tf.print("Assigning target stats")
        ]

        def variance(x):
            x -= tf.reduce_mean(x, 0, keep_dims=True)
            x = tf.square(x)
            return x

        def rotated_variance(x):
            x2 = tf.reshape(x, [-1, self.target_spec.num_dims])
            x2 -= tf.reduce_mean(x2, 0, keep_dims=True)
            x2 = tf.matmul(x2, self.cached_target_eigvecs)
            x2 = tf.square(x2)
            return tf.reshape(x2, tf.shape(x))

        functions = [
            ("mean", tf.identity),
            #        ("var", variance),
            ("square", tf.square),
            #        ("rot_square", rot_square),
            #        ("rot_var", rotated_variance),
        ]

        self.cached_target_mean = {}
        self.cached_target_mean_update_op = [
            tf.print("Assigning target means.")
        ]
        self.neutra_stats = {}
        self.q_stats = {}

        for name, f in functions:
            target_mean = tf.reduce_mean(f(self.target_samples), 0)
            cached_target_mean = tf.get_local_variable(name + "_cached_mean",
                                                       target_mean.shape)
            if self.target_spec.stats is not None:
                self.cached_target_mean_update_op.append(
                    cached_target_mean.assign(self.target_spec.stats[name]))
            else:
                self.cached_target_mean_update_op.append(
                    cached_target_mean.assign(target_mean))

            self.cached_target_mean[name] = cached_target_mean
            self.q_stats[name] = ComputeQStats(f(self.q_samples),
                                               cached_target_mean)
            self.neutra_stats[name] = ComputeChainStats(
                f(self.neutra_outputs.x_chain), cached_target_mean,
                self.test_num_leapfrog_steps)

        # Training
        self.train_q_samples = self.q_x_train.sample(self.train_batch_size)
        self.train_log_q_x = self.q_x_train.log_prob(self.train_q_samples)
        self.kl_q_p = tf.reduce_mean(
            self.train_log_q_x - self.target.log_prob(self.train_q_samples))

        loss = self.kl_q_p
        reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        if reg_losses:
            tf.logging.info("Regularizing.")
            loss += tf.add_n(reg_losses)
        self.loss = tf.check_numerics(loss, "Loss has NaNs")

        self.global_step = tf.train.get_or_create_global_step()
        steps, factors = list(zip(*learning_rate_schedule))
        learning_rate = base_learning_rate * tf.train.piecewise_constant(
            self.global_step, steps, [1.0] + list(factors))

        opt = tf.train.AdamOptimizer(learning_rate=learning_rate)
        self.train_op = opt.minimize(self.loss, global_step=self.global_step)

        tf.summary.scalar("kl_q_p", self.kl_q_p)
        tf.summary.scalar("loss", self.loss)

        self.init = [
            tf.global_variables_initializer(),
            tf.local_variables_initializer(),
            tf.print("Initializing variables")
        ]

        self.saver = tf.train.Saver()
        self.log_dir = log_dir
示例#22
0
    def init_networks(self):
        """
        Init training and validation networks.
        """
        network_image_size = list(reversed(self.image_size))
        num_instances = 1 if self.bitwise_instance_image else None
        num_instances_val = None

        if self.data_format == 'channels_first':
            data_generator_entries = OrderedDict([
                ('image', [1, self.num_frames] + network_image_size),
                ('instances_merged',
                 [num_instances, self.num_frames] + network_image_size),
                ('instances_bac',
                 [num_instances, self.num_frames] + network_image_size)
            ])
            data_generator_entries_test_cropped_single_frame = OrderedDict([
                ('image', [1] + network_image_size),
                ('instances_merged', [num_instances_val] + network_image_size),
                ('instances_bac', [num_instances_val] + network_image_size)
            ])
            embedding_normalization_function = lambda x: tf.nn.l2_normalize(
                x, dim=self.channel_axis)
        else:
            assert 'channels_last not supported'
        data_generator_types = {
            'image': tf.float32,
            'instances_merged': self.bitwise_instances_image_type,
            'instances_bac': self.bitwise_instances_image_type
        }

        # create model with shared weights between train and val
        training_net = tf.make_template('net', self.network)

        # build train graph
        self.train_queue = DataGeneratorPadding(
            self.dataset_train,
            self.coord,
            data_generator_entries,
            batch_size=self.batch_size,
            data_types=data_generator_types,
            n_threads=4)

        # build train graph
        data, instances_tra, instances_bac = self.train_queue.dequeue()
        embeddings_tuple = training_net(
            data,
            num_outputs_embedding=self.num_embeddings,
            is_training=True,
            data_format=self.data_format,
            actual_network=self.actual_network,
            **self.network_parameters)

        if not isinstance(embeddings_tuple, tuple):
            embeddings_tuple = (embeddings_tuple, )

        loss_reg = get_reg_loss(self.reg_constant, True)

        with tf.name_scope('train_loss'):
            train_losses_dict = self.losses(
                embeddings_tuple,
                instances_tra,
                instances_bac,
                bitwise_instances=self.bitwise_instance_image)
            train_losses_dict['loss_reg'] = loss_reg
            self.loss = tf.reduce_sum(list(train_losses_dict.values()))
            self.train_losses = train_losses_dict

        # solver
        global_step = tf.Variable(self.current_iter)
        learning_rate = tf.train.piecewise_constant(
            global_step, self.learning_rate_boundaries, self.learning_rates)
        #optimizer = tf.contrib.opt.NadamOptimizer(learning_rate=learning_rate)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        self.optimizer = optimizer.minimize(self.loss, global_step=global_step)

        # initialize variables
        self.sess.run(tf.global_variables_initializer())
        self.sess.run(tf.local_variables_initializer())

        print('Variables')
        for i in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
            print(i)

        # build val graph
        val_placeholders_cropped = create_placeholders(
            data_generator_entries_test_cropped_single_frame, shape_prefix=[1])
        self.data_cropped_val = val_placeholders_cropped['image']
        self.instances_cropped_tra_val = val_placeholders_cropped[
            'instances_merged']
        self.instances_cropped_bac_val = val_placeholders_cropped[
            'instances_bac']
        with tf.variable_scope('net/rnn', reuse=True):
            output_tuple = network_single_frame_with_lstm_states(
                self.data_cropped_val,
                num_outputs_embedding=self.num_embeddings,
                data_format=self.data_format,
                actual_network=self.actual_network,
                **self.network_parameters)
            self.lstm_input_states_cropped_val = output_tuple[0]
            self.lstm_output_states_cropped_val = output_tuple[1]
            self.embeddings_cropped_val = output_tuple[2:]

        if not isinstance(self.embeddings_cropped_val, tuple):
            self.embeddings_cropped_val = (self.embeddings_cropped_val, )

        with tf.variable_scope('loss'):
            val_losses_dict = self.losses(self.embeddings_cropped_val,
                                          self.instances_cropped_tra_val,
                                          self.instances_cropped_bac_val,
                                          bitwise_instances=False)
            val_losses_dict['loss_reg'] = loss_reg
            self.loss_val = tf.reduce_sum(list(val_losses_dict.values()))
            self.val_losses = val_losses_dict

        if not self.normalized_embeddings:
            self.embeddings_cropped_val = tuple([
                embedding_normalization_function(e)
                for e in self.embeddings_cropped_val
            ])
def masked_autoregressive_conditional_template(
        hidden_layers,
        conditional_tensor,
        shift_only=False,
        activation=tf.nn.relu,
        log_scale_min_clip=-3.,
        log_scale_max_clip=3.,
        log_scale_clip_gradient=True,
        name=None,
        *args,  # pylint: disable=keyword-arg-before-vararg
        **kwargs):
    """Build the Masked Autoregressive Density Estimator (Germain et al., 2015).
  This will be wrapped in a make_template to ensure the variables are only
  created once. It takes the input and returns the `loc` ('mu' in [Germain et
  al. (2015)][1]) and `log_scale` ('alpha' in [Germain et al. (2015)][1]) from
  the MADE network.
  Warning: This function uses `masked_dense` to create randomly initialized
  `tf.Variables`. It is presumed that these will be fit, just as you would any
  other neural architecture which uses `tf.layers.dense`.
  #### About Hidden Layers
  Each element of `hidden_layers` should be greater than the `input_depth`
  (i.e., `input_depth = tf.shape(input)[-1]` where `input` is the input to the
  neural network). This is necessary to ensure the autoregressivity property.
  #### About Clipping
  This function also optionally clips the `log_scale` (but possibly not its
  gradient). This is useful because if `log_scale` is too small/large it might
  underflow/overflow making it impossible for the `MaskedAutoregressiveFlow`
  bijector to implement a bijection. Additionally, the `log_scale_clip_gradient`
  `bool` indicates whether the gradient should also be clipped. The default does
  not clip the gradient; this is useful because it still provides gradient
  information (for fitting) yet solves the numerical stability problem. I.e.,
  `log_scale_clip_gradient = False` means
  `grad[exp(clip(x))] = grad[x] exp(clip(x))` rather than the usual
  `grad[clip(x)] exp(clip(x))`.
  Args:
    hidden_layers: Python `list`-like of non-negative integer, scalars
      indicating the number of units in each hidden layer. Default: `[512, 512].
    shift_only: Python `bool` indicating if only the `shift` term shall be
      computed. Default: `False`.
    activation: Activation function (callable). Explicitly setting to `None`
      implies a linear activation.
    log_scale_min_clip: `float`-like scalar `Tensor`, or a `Tensor` with the
      same shape as `log_scale`. The minimum value to clip by. Default: -5.
    log_scale_max_clip: `float`-like scalar `Tensor`, or a `Tensor` with the
      same shape as `log_scale`. The maximum value to clip by. Default: 3.
    log_scale_clip_gradient: Python `bool` indicating that the gradient of
      `tf.clip_by_value` should be preserved. Default: `False`.
    name: A name for ops managed by this function. Default:
      'masked_autoregressive_default_template'.
    *args: `tf.layers.dense` arguments.
    **kwargs: `tf.layers.dense` keyword arguments.
  Returns:
    shift: `Float`-like `Tensor` of shift terms (the 'mu' in
      [Germain et al.  (2015)][1]).
    log_scale: `Float`-like `Tensor` of log(scale) terms (the 'alpha' in
      [Germain et al. (2015)][1]).
  Raises:
    NotImplementedError: if rightmost dimension of `inputs` is unknown prior to
      graph execution.
  #### References
  [1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
       Masked Autoencoder for Distribution Estimation. In _International
       Conference on Machine Learning_, 2015. https://arxiv.org/abs/1502.03509
  """
    name = name or 'masked_autoregressive_conditional_template'
    with tf.name_scope(name):

        def _fn(x):
            """MADE parameterized via `masked_autoregressive_default_template`."""
            # TODO(b/67594795): Better support of dynamic shape.
            cond_depth = tf.compat.dimension_value(
                tensorshape_util.with_rank_at_least(conditional_tensor.shape,
                                                    1)[-1])

            input_shape = (np.int32(tensorshape_util.as_list(x.shape))
                           if tensorshape_util.is_fully_defined(x.shape) else
                           tf.shape(x))
            if tensorshape_util.rank(x.shape) == 1:
                x = x[tf.newaxis, ...]
            x = tf.concat([conditional_tensor, x], axis=-1)
            input_depth = tf.compat.dimension_value(
                tensorshape_util.with_rank_at_least(x.shape, 1)[-1])
            if input_depth is None:
                raise NotImplementedError(
                    'Rightmost dimension must be known prior to graph execution.'
                )
            for i, units in enumerate(hidden_layers):
                x = masked_dense(
                    inputs=x,
                    units=units,
                    num_blocks=input_depth,
                    exclusive=True if i == 0 else False,
                    activation=activation,
                    *args,  # pylint: disable=keyword-arg-before-vararg
                    **kwargs)
            x = masked_dense(
                inputs=x,
                units=(1 if shift_only else 2) * input_depth,
                num_blocks=input_depth,
                activation=None,
                *args,  # pylint: disable=keyword-arg-before-vararg
                **kwargs)
            if shift_only:
                x = x[..., cond_depth:]
                x = tf.reshape(x, shape=input_shape)
                return x, None
            else:
                x = x[..., 2 * cond_depth:]
            x = tf.reshape(x, shape=tf.concat([input_shape, [2]], axis=0))
            shift, log_scale = tf.unstack(x, num=2, axis=-1)
            which_clip = (tf.clip_by_value if log_scale_clip_gradient else
                          clip_by_value_preserve_gradient)
            log_scale = which_clip(log_scale, log_scale_min_clip,
                                   log_scale_max_clip)
            return shift, log_scale

        return tf1.make_template(name, _fn)
示例#24
0
文件: base.py 项目: deepmind/sonnet
  def __init__(self, _sentinel=None, custom_getter=None,
               name=None):  # pylint: disable=invalid-name
    """Performs the initialisation necessary for all AbstractModule instances.

    Every subclass of AbstractModule must begin their constructor with a call to
    this constructor, i.e.

    `super(MySubModule, self).__init__(custom_getter=custom_getter, name=name)`.

    If you instantiate sub-modules in __init__ you must create them within the
    `_enter_variable_scope` context manager to ensure they are in the module's
    variable scope. Alternatively, instantiate sub-modules in `_build`.

    Args:
      _sentinel: Variable that only carries a non-None value if `__init__` was
          called without named parameters. If this is the case, a deprecation
          warning is issued in form of a `ValueError`.
      custom_getter: Callable or dictionary of callables to use as
        custom getters inside the module. If a dictionary, the keys
        correspond to regexes to match variable names. See the `tf.get_variable`
        documentation for information about the custom_getter API.
      name: Name of this module. Used to construct the Templated build function.
          If `None` the module's class name is used (converted to snake case).

    Raises:
      TypeError: If `name` is not a string.
      TypeError: If a given `custom_getter` is not callable.
      ValueError: If `__init__` was called without named arguments.
    """
    if _sentinel is not None:
      raise ValueError("Calling AbstractModule.__init__ without named "
                       "arguments is not supported.")

    if name is None:
      name = util.to_snake_case(self.__class__.__name__)
    elif not isinstance(name, six.string_types):
      raise TypeError("Name must be a string, not {} of type {}.".format(
          name, type(name)))

    self._is_connected = False
    self._connected_subgraphs = []

    # If the given custom getter is a dictionary with a per-variable custom
    # getter, wrap it into a single custom getter.
    if isinstance(custom_getter, collections.Mapping):
      self._custom_getter = util.custom_getter_router(
          custom_getter_map=custom_getter,
          name_fn=lambda name: name[len(self.scope_name) + 1:])
    elif custom_getter is not None and not callable(custom_getter):
      raise TypeError("Given custom_getter is not callable.")
    else:
      self._custom_getter = custom_getter

    self._template = tf.make_template(
        name,
        self._build_wrapper,
        create_scope_now_=True,
        custom_getter_=self._custom_getter)

    self._original_name = name
    self._unique_name = self._template.variable_scope.name.split("/")[-1]

    # Copy signature of _build to __call__.
    adapter_fn = getattr(self._build, "__func__", self._build)
    @wrapt.decorator(adapter=adapter_fn)
    def copy_signature(method, unused_instance, args, kwargs):
      return method(*args, **kwargs)
    @copy_signature
    def __call__(instance, *args, **kwargs):  # pylint: disable=invalid-name
      return AbstractModule.__call__(instance, *args, **kwargs)
    # use __dict__ instead of setting directly to avoid a Callable pytype error
    self.__dict__["__call__"] = types.MethodType(__call__, self)

    # Update __call__ and the object docstrings to enable better introspection.
    self.__doc__ = self._build.__doc__
    self.__call__.__func__.__doc__ = self._build.__doc__

    # Keep track of which graph this module has been connected to. Sonnet
    # modules cannot be connected to multiple graphs, as transparent variable
    # sharing is impossible in that case.
    self._graph = None

    # Container for all variables created in this module and its sub-modules.
    self._all_variables = set([])

    # Calling `.defun()` causes the module's call method to become wrapped as
    # a graph function.
    self._defun_wrapped = False
    def init_networks(self):
        network_image_size = self.image_size

        if self.data_format == 'channels_first':
            data_generator_entries = OrderedDict([
                ('image', [1] + network_image_size),
                ('labels', [self.num_labels] + network_image_size)
            ])
        else:
            data_generator_entries = OrderedDict([
                ('image', network_image_size + [1]),
                ('labels', network_image_size + [self.num_labels])
            ])

        # create model with shared weights between train and val
        training_net = tf.make_template('net', self.network)

        # build train graph
        self.train_queue = DataGenerator(self.dataset_train,
                                         self.coord,
                                         data_generator_entries,
                                         batch_size=self.batch_size)
        data, mask = self.train_queue.dequeue()
        prediction, _, _ = training_net(data,
                                        num_labels=self.num_labels,
                                        is_training=True,
                                        data_format=self.data_format)
        # losses
        self.loss_net = self.loss_function(labels=mask,
                                           logits=prediction,
                                           data_format=self.data_format)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            if self.reg_constant > 0:
                reg_losses = tf.get_collection(
                    tf.GraphKeys.REGULARIZATION_LOSSES)
                self.loss_reg = self.reg_constant * tf.add_n(reg_losses)
                self.loss = self.loss_net + self.loss_reg
            else:
                self.loss = self.loss_net

        self.train_losses = OrderedDict([('loss', self.loss_net),
                                         ('loss_reg', self.loss_reg)])

        # solver
        global_step = tf.Variable(self.current_iter)
        learning_rate = tf.train.piecewise_constant(
            global_step, self.learning_rate_boundaries, self.learning_rates)
        self.optimizer = tf.train.AdamOptimizer(
            learning_rate=learning_rate).minimize(self.loss,
                                                  global_step=global_step)

        # build val graph
        val_placeholders = tensorflow_train.utils.tensorflow_util.create_placeholders(
            data_generator_entries, shape_prefix=[1])
        self.data_val = val_placeholders['image']
        self.prediction_val, self.local_prediction_val, self.spatial_prediction_val = training_net(
            self.data_val,
            num_labels=self.num_labels,
            is_training=False,
            data_format=self.data_format)
        self.prediction_softmax_val = tf.nn.softmax(
            self.prediction_val,
            axis=1 if self.data_format == 'channels_first' else 4)

        if self.has_validation_groundtruth:
            self.mask_val = val_placeholders['labels']
            # losses
            self.loss_val = self.loss_function(labels=self.mask_val,
                                               logits=self.prediction_val,
                                               data_format=self.data_format)
            self.val_losses = OrderedDict([('loss', self.loss_val),
                                           ('loss_reg', self.loss_reg)])
示例#26
0
    def __init__(self,
                 train_envs,
                 test_envs,
                 replay_buffer,
                 obs_dim,
                 action_dim,
                 reward_dim,
                 env_params_dim,
                 seq_len,
                 qf1,
                 qf2,
                 vf,
                 policy,
                 policy_lr=1e-3,
                 qf_lr=1e-3,
                 alpha_lr=1e-3,
                 gamma=0.99,
                 target_entropy='auto',
                 tau=0.005,
                 no_info_policy=False):

        self.replay_buffer = replay_buffer
        # environment
        self.train_envs = train_envs
        self.train_envs_ids = env_utils.get_env_id(self.train_envs)
        self.test_envs = test_envs
        self.test_envs_ids = env_utils.get_env_id(self.test_envs)

        # dims
        self.obs_dim = obs_dim
        self.action_dim = action_dim
        self.reward_dim = reward_dim
        self.env_params_dim = env_params_dim

        self.target_entropy = target_entropy if target_entropy != 'auto' else -np.prod(
            self.action_dim)

        # logger
        self.logger = EpochLogger()

        # learning rates
        self.policy_lr = policy_lr
        self.qf_lr = qf_lr
        self.vf_lr = qf_lr
        self.alpha_lr = alpha_lr

        # other params
        self.seq_len = seq_len
        self.gamma = gamma
        self.tau = tau

        self.no_info_policy = no_info_policy  # give policy the env params?

        # alpha
        log_alpha = tf.compat.v1.get_variable('log_alpha',
                                              dtype=tf.float32,
                                              initializer=0.)
        self.alpha = tf.exp(log_alpha)

        # placeholders
        self.iteration_var = tf1.placeholder(tf.int64,
                                             shape=None,
                                             name='iteration')
        self.obs_var = tf1.placeholder(tf.float32,
                                       shape=(None, self.obs_dim),
                                       name='obs')
        self.next_obs_var = tf1.placeholder(tf.float32,
                                            shape=(None, self.obs_dim),
                                            name='next_obs')
        self.actions_var = tf1.placeholder(tf.float32,
                                           shape=(None, self.action_dim),
                                           name='actions')
        self.rewards_var = tf1.placeholder(tf.float32,
                                           shape=(None, self.reward_dim),
                                           name='rewards')
        self.terminals_var = tf1.placeholder(tf.float32,
                                             shape=(None, ),
                                             name='terminals')
        self.env_params_var = tf1.placeholder(tf.float32,
                                              shape=(None,
                                                     self.env_params_dim),
                                              name='env_params')

        # placeholders for sequences
        self.obs_seq_var = tf1.placeholder(tf.float32,
                                           shape=(None, self.seq_len,
                                                  self.obs_dim),
                                           name='obs_seq_var')
        self.next_obs_seq_var = tf1.placeholder(tf.float32,
                                                shape=(None, self.seq_len,
                                                       self.obs_dim),
                                                name='next_obs_seq_var')
        self.actions_seq_var = tf1.placeholder(tf.float32,
                                               shape=(None, self.seq_len,
                                                      self.action_dim),
                                               name='actions_seq')
        self.rewards_seq_var = tf1.placeholder(tf.float32,
                                               shape=(None, self.seq_len,
                                                      self.reward_dim),
                                               name='rewards_seq')
        self.terminals_seq_var = tf1.placeholder(tf.float32,
                                                 shape=(None, self.seq_len),
                                                 name='terminals_seq')
        self.env_params_seq_var = tf1.placeholder(tf.float32,
                                                  shape=(None, self.seq_len,
                                                         self.env_params_dim),
                                                  name='env_params_seq')

        # templates
        self.qf1 = tf1.make_template('qf1', qf1)
        self.qf2 = tf1.make_template('qf2', qf2)
        self.vf = tf1.make_template('vf_main', vf)
        self.vf_target = tf1.make_template('vf_target', vf)
        self.policy = tf1.make_template('policy', policy)

        # outputs from the networks
        self.qf1_out = self.qf1(
            tf.concat([
                self.obs_seq_var, self.actions_seq_var, self.env_params_seq_var
            ],
                      axis=-1))
        qf2_out = self.qf2(
            tf.concat([
                self.obs_seq_var, self.actions_seq_var, self.env_params_seq_var
            ],
                      axis=-1))
        vf_out = self.vf(
            tf.concat([self.obs_seq_var, self.env_params_seq_var], axis=-1))
        vf_target_out = self.vf_target(
            tf.concat([self.next_obs_seq_var, self.env_params_seq_var],
                      axis=-1))

        sampled_seq_actions, actions_seq_logprobs = self.sample_oracle_actions_sequence(
            policy=self.policy,
            obs=self.obs_seq_var,
            env_params=self.env_params_seq_var)

        qf1_pi_out = self.qf1(
            tf.concat([
                self.obs_seq_var, sampled_seq_actions, self.env_params_seq_var
            ],
                      axis=-1))
        qf2_pi_out = self.qf2(
            tf.concat([
                self.obs_seq_var, sampled_seq_actions, self.env_params_seq_var
            ],
                      axis=-1))

        self.get_sampled_action = self.sample_oracle_action(
            policy=self.policy,
            obs=self.obs_var,
            env_params=self.env_params_var)

        # session and init weights
        self.sess = tf.Session()
        init_networks_params = tf.global_variables_initializer()
        self.sess.run(init_networks_params)
        self.saver = tf.train.Saver()

        print(
            'number of parameters:',
            np.sum([
                np.prod(v.get_shape().as_list())
                for v in tf.trainable_variables()
            ]))

        # network parameters
        policy_params = tf.trainable_variables(self.policy.name)
        qf1_params = tf.trainable_variables(self.qf1.name)
        qf2_params = tf.trainable_variables(self.qf2.name)
        vf_params = tf.trainable_variables(self.vf.name)
        vf_target_params = tf.trainable_variables(self.vf_target.name)

        print('policy params', nn_utils.count_vars(self.policy.name),
              policy_params)
        print('QF1', nn_utils.count_vars(self.qf1.name), qf1_params)
        print('QF2', nn_utils.count_vars(self.qf2.name), qf2_params)
        print('VF', nn_utils.count_vars(self.vf.name), vf_params)
        print('VF_target', nn_utils.count_vars(self.vf_target.name),
              vf_target_params)

        # losses
        self.q_target = tf.stop_gradient(
            tf.squeeze(self.rewards_seq_var) +
            (1. - self.terminals_seq_var) * self.gamma * vf_target_out)
        qf1_loss = 0.5 * tf.reduce_mean((self.q_target - self.qf1_out)**2)
        qf2_loss = 0.5 * tf.reduce_mean((self.q_target - qf2_out)**2)

        min_q_pi = tf.minimum(qf1_pi_out, qf2_pi_out)
        v_target = tf.stop_gradient(min_q_pi -
                                    self.alpha * actions_seq_logprobs)
        vf_loss = 0.5 * tf.reduce_mean((v_target - vf_out)**2)

        value_loss = qf1_loss + qf2_loss + vf_loss

        policy_loss = tf.reduce_mean(self.alpha * actions_seq_logprobs -
                                     min_q_pi)

        alpha_loss = -tf.reduce_mean(
            log_alpha *
            tf.stop_gradient(actions_seq_logprobs + self.target_entropy))

        entropy = -tf.reduce_mean(actions_seq_logprobs)

        policy_train_op = tf1.train.AdamOptimizer(
            learning_rate=self.policy_lr).minimize(policy_loss,
                                                   var_list=policy_params,
                                                   name='policy_opt')

        with tf.control_dependencies([policy_train_op]):
            value_params = qf1_params + qf2_params + vf_params
            critics_train_op = tf1.train.AdamOptimizer(self.qf_lr).minimize(
                value_loss, var_list=value_params, name='qf_vf_opt')

        with tf.control_dependencies([critics_train_op]):
            alpha_train_op = tf1.train.AdamOptimizer(
                self.alpha_lr, name='alpha_opt').minimize(loss=alpha_loss,
                                                          var_list=[log_alpha])
            target_update = tf.group([
                tf.assign(v_targ, (1. - self.tau) * v_targ + tau * v_main)
                for v_main, v_targ in zip(vf_params, vf_target_params)
            ])

        self.actor_critic_train_step_ops = [
            policy_loss, qf1_loss, qf2_loss, vf_loss, alpha_loss, self.qf1_out,
            qf2_out, vf_out, entropy, policy_train_op, critics_train_op,
            alpha_train_op, target_update
        ]

        # init the rest of variables
        target_init = tf.group([
            tf.assign(v_targ, v_main)
            for v_main, v_targ in zip(vf_params, vf_target_params)
        ])

        uninitialized_vars = []
        for var in tf.global_variables():
            try:
                self.sess.run(var)
            except tf.errors.FailedPreconditionError:
                uninitialized_vars.append(var)

        init_new_vars_op = tf.initialize_variables(uninitialized_vars)
        self.sess.run(init_new_vars_op)
        self.sess.run(target_init)
示例#27
0
文件: lm.py 项目: yyht/lamb
    def _build_model(self, config):
        self.global_step_var = tf.Variable(tf.zeros([], tf.int64),
                                           name='global_step',
                                           trainable=False)
        self.learning_rate = tf.placeholder(tf.float32,
                                            shape=[],
                                            name='learning_rate')

        ## Input variables

        self.num_samples = tf.placeholder_with_default(1,
                                                       shape=[],
                                                       name='num_samples')

        # For MT, this is the source language text. For LM, this is not used.
        if config.conditioning_separator:
            assert config.episodic, 'conditioning and non-episodic do not mix.'
            self.conditioning = tf.placeholder(
                dtype=tf.int64,
                shape=[config.max_time_steps, None],
                name='conditioning')
            self.conditioning_len = tf.placeholder(dtype=tf.int64,
                                                   shape=[None],
                                                   name='conditioning_len')

        # For plain LM, this is the input text. For MT this is the target language
        # text.
        self.source = tf.placeholder(dtype=tf.int64,
                                     shape=[config.max_time_steps, None],
                                     name='source')
        self.source_len = tf.placeholder(dtype=tf.int64,
                                         shape=[None],
                                         name='source_len')

        # This is the ground truth text to be predicted. A shifted by one version
        # version of self.source.
        self.target = tf.placeholder(dtype=tf.int64,
                                     shape=[config.max_time_steps, None],
                                     name='target')

        def maybe_create_dropout_placeholder(configured_dropout_rate, name):
            if configured_dropout_rate > 0.0:
                return tf.placeholder(tf.float32, shape=[], name=name)
            else:
                return None

        self.embedding_dropout = maybe_create_dropout_placeholder(
            config.embedding_dropout, 'embedding_dropout')
        self.token_dropout = maybe_create_dropout_placeholder(
            config.token_dropout, 'token_dropout')
        self.input_dropout = maybe_create_dropout_placeholder(
            config.input_dropout, 'input_dropout')
        self.inter_layer_dropout = maybe_create_dropout_placeholder(
            config.inter_layer_dropout, 'inter_layer_dropout')
        self.update_dropout = maybe_create_dropout_placeholder(
            config.update_dropout, 'update_dropout')
        self.state_dropout = maybe_create_dropout_placeholder(
            config.state_dropout, 'state_dropout')
        self.flip_prob = maybe_create_dropout_placeholder(
            config.state_dropout_flip_rate, 'flip_prob')
        self.output_dropout = maybe_create_dropout_placeholder(
            config.output_dropout, 'output_dropout')
        self.downprojected_output_dropout = maybe_create_dropout_placeholder(
            config.downprojected_output_dropout,
            'downprojected_output_dropout')

        self.softmax_temperature = tf.placeholder_with_default(
            1.0, shape=[], name='softmax_temperature')

        ## Training

        embedding_initializer = tf.variance_scaling_initializer(
            scale=config.embedding_init_factor,
            mode='fan_out',
            distribution='truncated_normal')
        output_initializer = tf.variance_scaling_initializer(
            scale=config.output_init_factor,
            mode='fan_in',
            distribution='truncated_normal')
        batch_size = tf.shape(self.source)[1]

        last_hidden_size = utils.ensure_list(config.hidden_size)[-1]

        tb_h = tf.stack([config.max_time_steps * batch_size, last_hidden_size])
        t_b_v = tf.stack(
            [config.max_time_steps, batch_size, config.vocab_size])
        t_bk_o = tf.stack([
            config.max_time_steps,
            batch_size * (config.mos_num_components or 1),
            config.output_embedding_size
        ])
        tbk_o = tf.stack([
            config.max_time_steps * batch_size *
            (config.mos_num_components or 1), config.output_embedding_size
        ])
        t_b0_s_v = tf.stack([
            config.max_time_steps,
            tf.div(batch_size, self.num_samples), self.num_samples,
            config.vocab_size
        ])

        if config.embed_once:
            with tf.variable_scope('im', initializer=embedding_initializer):
                embedding = tf.get_variable(
                    'embedding',
                    [config.vocab_size, config.input_embedding_size],
                    initializer=embedding_initializer,
                    dtype=tf.float32)
                if self.embedding_dropout is not None:
                    embedding = tf.nn.dropout(embedding,
                                              1 - self.embedding_dropout,
                                              noise_shape=tf.stack(
                                                  [config.vocab_size, 1]))
                embedded_source = tf.nn.embedding_lookup(
                    embedding, self.source)
                if self.token_dropout is not None:
                    embedding = tf.nn.dropout(embedding,
                                              1 - self.token_dropout,
                                              noise_shape=tf.stack([
                                                  config.max_time_steps,
                                                  batch_size, 1
                                              ]))
                if config.scale_input_embeddings:
                    embedded_source *= tf.sqrt(
                        tf.cast(config.input_embedding_size, tf.float32))
                sources = embedded_source
        else:
            assert self.embedding_dropout is None, 'Not implemented.'
            assert self.token_dropout is None, 'Not implemented.'
            sources = self.source

        def lm_1(cell, initial_state, inputs, input_lens, scope=None):
            # According to tests (2019-03-13) swap_memory carries only a very penalty
            # so we use it to choose between dynamic_rnn and static_rnn. For some
            # reason, static_rnn can be 2x faster ... sometimes. On the other hand,
            # dynamic_rnn handles memory better even without swap_memory=True.
            if FLAGS.swap_memory:
                return tf.nn.dynamic_rnn(cell=cell,
                                         inputs=inputs,
                                         time_major=True,
                                         sequence_length=input_lens,
                                         initial_state=initial_state,
                                         swap_memory=FLAGS.swap_memory,
                                         dtype=tf.float32,
                                         scope=scope)
            else:
                return tf.nn.static_rnn(cell=cell,
                                        inputs=tf.unstack(inputs),
                                        sequence_length=input_lens,
                                        initial_state=initial_state,
                                        dtype=tf.float32,
                                        scope=scope)

        # This is for the config.output_once=True case.
        def output_module_1(outputs):
            with tf.variable_scope('om', initializer=output_initializer):
                # Create the matrix and bias for the final projection into the softmax.
                if config.share_input_and_output_embeddings:
                    assert config.embed_once, 'Not implemented.'
                    softmax_weights = embedding
                    softmax_weights_transpose = True
                else:
                    softmax_weights = tf.get_variable(
                        'weights',
                        [config.output_embedding_size, config.vocab_size],
                        dtype=tf.float32)
                    softmax_weights_transpose = False
                softmax_bias = tf.get_variable(
                    'bias', [1, config.vocab_size],
                    initializer=tf.zeros_initializer(),
                    dtype=tf.float32)

                def to_softmax(x, dropout=self.downprojected_output_dropout):
                    if dropout is not None:
                        if not config.shared_mask_dropout:
                            x = tf.nn.dropout(x, 1.0 - dropout)
                        else:
                            x = tf.reshape(x, t_bk_o)
                            x = tf.nn.dropout(
                                x,
                                1.0 - dropout,
                                # same mask for all time steps
                                noise_shape=[
                                    1, batch_size *
                                    (config.mos_num_components or 1),
                                    config.output_embedding_size
                                ])
                            x = tf.reshape(x, tbk_o)
                    return (self.softmax_temperature *
                            (tf.matmul(x,
                                       softmax_weights,
                                       transpose_b=softmax_weights_transpose) +
                             softmax_bias))

                last_hidden_size = utils.ensure_list(config.hidden_size)[-1]
                outputs_t_b_h = tf.convert_to_tensor(outputs)
                if self.output_dropout is not None:
                    if not config.shared_mask_dropout:
                        outputs_t_b_h = tf.nn.dropout(
                            outputs_t_b_h, 1.0 - self.output_dropout)
                    else:
                        outputs_t_b_h = tf.nn.dropout(
                            outputs_t_b_h,
                            1.0 - self.output_dropout,
                            noise_shape=[1, batch_size, last_hidden_size])
                outputs_tb_h = tf.reshape(outputs_t_b_h, tb_h)

                if config.mos_num_components == 0:
                    if config.output_embedding_size == last_hidden_size:
                        return (tf.reshape(to_softmax(outputs_tb_h, None),
                                           t_b_v), outputs_t_b_h)
                    else:
                        downprojected_outputs_tb_o = utils.linear(
                            outputs_tb_h,
                            config.output_embedding_size,
                            False,
                            initializer=utils.orthogonal_initializer(),
                            scope='projection')
                        logits_tb_v = to_softmax(downprojected_outputs_tb_o)
                        return tf.reshape(logits_tb_v, t_b_v), outputs_t_b_h
                else:
                    logits_tb_v = utils.mixture_of_softmaxes(
                        outputs_tb_h, config.mos_num_components,
                        config.output_embedding_size, to_softmax)
                    return tf.reshape(logits_tb_v, t_b_v), outputs_t_b_h

        # This is for the config.output_once=False case.
        def output_module_per_step_1(outputs_b_h):
            with tf.variable_scope('om', initializer=output_initializer):

                def to_softmax(x, dropout=self.downprojected_output_dropout):
                    # Create the matrix and bias for the final projection into the
                    # softmax.
                    if config.share_input_and_output_embeddings:
                        assert config.embed_once, 'Not implemented.'
                        softmax_weights = embedding
                        softmax_weights_transpose = True
                    else:
                        softmax_weights = tf.get_variable(
                            'weights',
                            [config.output_embedding_size, config.vocab_size],
                            dtype=tf.float32)
                        softmax_weights_transpose = False
                    softmax_bias = tf.get_variable(
                        'bias', [1, config.vocab_size],
                        initializer=tf.zeros_initializer(),
                        dtype=tf.float32)
                    if dropout is not None:
                        x = Dropout(1.0 - dropout,
                                    share_mask=config.shared_mask_dropout)(x)
                    return (self.softmax_temperature *
                            (tf.matmul(x,
                                       softmax_weights,
                                       transpose_b=softmax_weights_transpose) +
                             softmax_bias))

                last_hidden_size = utils.ensure_list(config.hidden_size)[-1]
                outputs_b_h = Dropout(
                    1.0 - self.output_dropout,
                    share_mask=self.output_dropout)(outputs_b_h)

                if config.mos_num_components == 0:
                    if config.output_embedding_size == last_hidden_size:
                        return to_softmax(outputs_b_h, None)
                    else:
                        downprojected_outputs_b_o = utils.linear(
                            outputs_b_h,
                            config.output_embedding_size,
                            False,
                            initializer=utils.orthogonal_initializer(),
                            scope='projection')
                        logits_b_v = to_softmax(downprojected_outputs_b_o)
                        return logits_b_v
                else:
                    logits_b_v = utils.mixture_of_softmaxes(
                        outputs_b_h, config.mos_num_components,
                        config.output_embedding_size, to_softmax)
                    return logits_b_v

        lm = tf.make_template('lm', lm_1)

        def make_cell():
            return build_cell(
                model=config.model,
                num_layers=config.num_layers,
                hidden_size=config.hidden_size,
                layer_norm=config.layer_norm,
                cell_init_factor=config.cell_init_factor,
                shared_mask_dropout=config.shared_mask_dropout,
                input_dropout=self.input_dropout,
                inter_layer_dropout=self.inter_layer_dropout,
                state_dropout=self.state_dropout,
                update_dropout=self.update_dropout,
                state_dropout_flip_rate=self.flip_prob,
                tie_forget_and_input_gates=config.tie_forget_and_input_gates,
                cap_input_gate=config.cap_input_gate,
                forget_bias=config.forget_bias,
                feature_mask_rounds=config.feature_mask_rounds,
                feature_mask_rank=config.feature_mask_rank,
                overlay_rank=config.overlay_rank,
                sparsity_ratio=config.sparsity_ratio,
                cell_clip=config.cell_clip,
                activation_fn=config.activation_fn,
                lstm_skip_connection=config.lstm_skip_connection,
                residual_connections=config.residual_connections)

        def make_conditioning():
            if config.embed_once:
                with tf.variable_scope('cond_im',
                                       initializer=embedding_initializer):
                    embedding = tf.get_variable(
                        'embedding', [
                            config.conditioning_vocab_size,
                            config.input_embedding_size
                        ],
                        initializer=embedding_initializer,
                        dtype=tf.float32)
                    if self.embedding_dropout is not None:
                        embedding = tf.nn.dropout(
                            embedding,
                            1 - self.embedding_dropout,
                            noise_shape=tf.stack(
                                [config.conditioning_vocab_size, 1]))
                    embedded_source = tf.nn.embedding_lookup(
                        embedding, self.conditioning)
                    if self.token_dropout is not None:
                        embedding = tf.nn.dropout(embedding,
                                                  1 - self.token_dropout,
                                                  noise_shape=tf.stack([
                                                      config.max_time_steps,
                                                      batch_size, 1
                                                  ]))
                    if config.scale_input_embeddings:
                        embedded_source *= tf.sqrt(
                            tf.cast(config.input_embedding_size, tf.float32))
                    conditioning_sources = embedded_source
            else:
                assert False, 'Not implemented.'

            conditioning_cell = make_cell()
            conditioning_lm = tf.make_template('cond_lm', lm_1)
            initial_state = conditioning_cell.zero_state(batch_size,
                                                         dtype=tf.float32)
            _, conditioning_last_state = conditioning_lm(
                conditioning_cell, initial_state, conditioning_sources,
                self.conditioning_len)
            return conditioning_last_state

        cell = make_cell()
        if not config.embed_once:
            cell = tf.nn.rnn_cell.EmbeddingWrapper(
                cell,
                config.vocab_size,
                config.input_embedding_size,
                initializer=embedding_initializer)
        if config.conditioning_separator:
            self.initial_state = make_conditioning()
        elif config.trainable_initial_state:
            with tf.variable_scope('lm_init'):
                self.initial_state = utils.trainable_initial_state(
                    batch_size, cell.state_size)
        else:
            self.initial_state = cell.zero_state(batch_size, dtype=tf.float32)
        outputs, self.last_state = lm(cell, self.initial_state, sources,
                                      self.source_len)
        self.cell_outputs = tf.convert_to_tensor(outputs)

        if config.output_once:
            output_module = tf.make_template('om', output_module_1)
            logits_, self.dropped_cell_outputs = output_module(outputs)
        else:
            assert config.activation_norm_penalty == 0.0, (
                'activation_norm_penalty not implemented for output_once=False.'
            )
            output_module_per_step = tf.make_template(
                'om', output_module_per_step_1)
            # KLUDGE: calling output_module_per_step here gets rid of the
            # 'rnn/FNCell/' prefix on the variables names so output_once=False and
            # output_once=True checkpoints are compatible.
            output_module_per_step(outputs[0])
            output_cell = utils.FNCell(output_module_per_step,
                                       config.vocab_size)
            logits_, _ = tf.nn.dynamic_rnn(
                cell=output_cell,
                inputs=tf.convert_to_tensor(outputs),
                time_major=True,
                sequence_length=self.source_len,
                swap_memory=FLAGS.swap_memory,
                dtype=tf.float32)

        def average_samples():
            # logits has shape t_b_v, where b=b0*num_samples. Separate out
            # the samples in a new dimension.
            logits = tf.reshape(logits_, t_b0_s_v)
            if config.model_average == 'geometric':
                x = tf.reduce_sum(logits, axis=2, keepdims=True)
            elif config.model_average == 'arithmetic':
                log_probs = tf.nn.log_softmax(logits)
                x = tf.reduce_logsumexp(log_probs, axis=2, keepdims=True)
            else:
                assert False, 'Not implemented.'
            # x is t_b0_1_v, tile it to t_b0_s_v.
            x = tf.ones_like(logits) * x
            return tf.reshape(x, t_b_v)

        self.logits = tf.cond(tf.equal(self.num_samples, 1), lambda: logits_,
                              average_samples)
示例#28
0
 def _create_network(self, name):
     return tf.make_template('Online', self._network_template)
示例#29
0
def real_nvp_default_template(
        hidden_layers,
        shift_only=False,
        activation=tf.nn.relu,
        name=None,
        *args,  # pylint: disable=keyword-arg-before-vararg
        **kwargs):
    """Build a scale-and-shift function using a multi-layer neural network.

  This will be wrapped in a make_template to ensure the variables are only
  created once. It takes the `d`-dimensional input x[0:d] and returns the `D-d`
  dimensional outputs `loc` ('mu') and `log_scale` ('alpha').

  The default template does not support conditioning and will raise an
  exception if `condition_kwargs` are passed to it. To use conditioning in
  Real NVP bijector, implement a conditioned shift/scale template that
  handles the `condition_kwargs`.

  Arguments:
    hidden_layers: Python `list`-like of non-negative integer, scalars
      indicating the number of units in each hidden layer. Default: `[512, 512].
    shift_only: Python `bool` indicating if only the `shift` term shall be
      computed (i.e. NICE bijector). Default: `False`.
    activation: Activation function (callable). Explicitly setting to `None`
      implies a linear activation.
    name: A name for ops managed by this function. Default:
      'real_nvp_default_template'.
    *args: `tf.layers.dense` arguments.
    **kwargs: `tf.layers.dense` keyword arguments.

  Returns:
    shift: `Float`-like `Tensor` of shift terms ('mu' in
      [Papamakarios et al.  (2016)][1]).
    log_scale: `Float`-like `Tensor` of log(scale) terms ('alpha' in
      [Papamakarios et al. (2016)][1]).

  Raises:
    NotImplementedError: if rightmost dimension of `inputs` is unknown prior to
      graph execution, or if `condition_kwargs` is not empty.

  #### References

  [1]: George Papamakarios, Theo Pavlakou, and Iain Murray. Masked
       Autoregressive Flow for Density Estimation. In _Neural Information
       Processing Systems_, 2017. https://arxiv.org/abs/1705.07057
  """

    with tf.name_scope(name or 'real_nvp_default_template'):

        def _fn(x, output_units, **condition_kwargs):
            """Fully connected MLP parameterized via `real_nvp_template`."""
            if condition_kwargs:
                raise NotImplementedError(
                    'Conditioning not implemented in the default template.')

            if tensorshape_util.rank(x.shape) == 1:
                x = x[tf.newaxis, ...]
                reshape_output = lambda x: x[0]
            else:
                reshape_output = lambda x: x
            for units in hidden_layers:
                x = tf1.layers.dense(
                    inputs=x,
                    units=units,
                    activation=activation,
                    *args,  # pylint: disable=keyword-arg-before-vararg
                    **kwargs)
            x = tf1.layers.dense(
                inputs=x,
                units=(1 if shift_only else 2) * output_units,
                activation=None,
                *args,  # pylint: disable=keyword-arg-before-vararg
                **kwargs)
            if shift_only:
                return reshape_output(x), None
            shift, log_scale = tf.split(x, 2, axis=-1)
            return reshape_output(shift), reshape_output(log_scale)

        return tf1.make_template('real_nvp_default_template', _fn)
def fit(net,
        img_shape,
        img_name, 
        image_mode,
        type_measurements,
        num_measurements,
        y_feed,
        A_feed,
        mask_info1,
        ini_channel = 32,
        mask_feed = None, 
        lr_decay_epoch=0,
        lr_decay_rate=0.65,
        LR=0.01,
        OPTIMIZER='adam',
        num_iter=5000,
        find_best=False,
        verbose=False,
        random_vector = None, 
        selection_mask = None,
        save = False,
        random_array = None):
    
    with tf.Graph().as_default():
        # Global step
        global_step = tf.train.get_or_create_global_step()
        
        # Set up palceholders
        n_input = img_shape[1]*img_shape[2]*img_shape[3]
        width = int(img_shape[1])
        height = int(img_shape[2])
        if mask_feed is None:
            if type_measurements == 'random': #compressed sensing with random matirx 
                A  = tf.placeholder(tf.float32, shape=(n_input, num_measurements), name='A') #e.g.[img_wid*img_high*3, 200]
                y = tf.placeholder(tf.float32, shape=(1, num_measurements), name='y') #e.g.[1, 200]
                #rand = tf.placeholder(tf.float32, shape=(1, width, height, ini_channel), name='random_noise') #e.g.[1,img_wid,img_high,32] 
            elif type_measurements == 'identity': #denosing 
                if image_mode != '3D':
                    A = tf.placeholder(tf.float32, shape=(n_input, n_input), name='A') #e.g.[img_wid*img_high*3, img_wid*img_high*3] ########!!!!!!#####!!!!!!!
                y = tf.placeholder(tf.float32, shape=(1, n_input), name='y') #e.g.[1, img_wid*img_high*3]
                #rand = tf.placeholder(tf.float32, shape=(1, width, height, ini_channel), name='random_noise') #e.g.[1,img_wid,img_high,32] 
            elif type_measurements == 'circulant': #compressed sensing with circulant matirx 
                y = tf.placeholder(tf.float32, shape=(1, n_input), name='y')#e.g.[1, img_wid*img_high*3]
                #rand = tf.placeholder(tf.float32, shape=(1, width, height, ini_channel), name='random_noise') #e.g.[1,img_wid,img_high,32] 
        else: #inpainting
            y = tf.placeholder(tf.float32, shape=(1, img_shape[1], img_shape[2], img_shape[3]), name='y')#e.g.[1, img_wid, img_high, 3]
            #rand = tf.placeholder(tf.float32, shape=(1, width, height, ini_channel), name='random_noise') #e.g.[1,img_wid,img_high,32] 
        
        # Define input uniform noise
        #rand = np.random.uniform(0, 1.0/30.0, size=(1, width, height, ini_channel)).astype(np.float32)
        out = tf.constant(np.random.uniform(size=(1, width, height, ini_channel)).astype(np.float32) * 1. / 10) #+ rand  #[1,4096,1,32] 
        out = tf.Variable(out, name='input_noise', trainable=False)
        
        # Deep image prior 
        feed_forward = tf.make_template("DeepImagePrior", net) #feed_forward takes a 4D Tensor (batch, width, height, channels) as input and outputs a 4D Tensor (batch, width*2^6, height*2^6, channels=3)
        x = feed_forward(out) #e.g. net_output with shape [1, img_wid, img_high, 3]               
        
        # Inverse problem settings
        def circulant_tf(signal_vector, random_vector_m, selection_mask_m):  
            signal_vector = tf.cast(signal_vector, dtype=tf.complex64, name='circulant_real2complex')
            t = tf.convert_to_tensor(random_vector_m, dtype=tf.complex64)
            #step 1: F^{-1} @ x
            r1 = tf.signal.ifft(signal_vector, name='circulant_step1_ifft')               
            #step 2: Diag() @ F^{-1} @ x
            Ft = tf.signal.fft(t)
            r2 = tf.multiply(r1, Ft, name='circulant_step2_diag')                
            #step 3: F @ Diag() @ F^{-1} @ x
            compressive = tf.signal.fft(r2, name='circulant_step3_fft')
            float_compressive = tf.cast(compressive, tf.float32, name='circulant_complex2real')               
            #step 4: R_{omega} @ C_{t}
            select_compressive = tf.multiply(float_compressive, selection_mask_m, name='circulant_step4_A')            
            return select_compressive
        
        if mask_feed is None: # Compressed sensing & Denoising      
            if type_measurements == 'circulant': # Compressed sensing with Circulant matrix 
                flip = tf.convert_to_tensor(random_array, dtype=tf.float32) # flip
                x_circulant =  tf.reshape(x, [1,-1]) * flip 
                y_hat = circulant_tf(x_circulant, random_vector, selection_mask) 
            else: # Compressed sensing with Random matrix & Denoising 
                if image_mode != '3D':
                    y_hat = tf.matmul(tf.reshape(x, [1,-1]), A) ########!!!!!!#####!!!!!!!
                else:
                    y_hat = tf.reshape(x, [1,-1])
        else:
            # Inpainting 
            y_hat = x * mask_feed
            
    
        # Define loss  
        mse = tf.losses.mean_squared_error
        loss = mse(y, y_hat)            

        # Define learning rate 
        if lr_decay_epoch > 0:
            LR = tf.train.exponential_decay(LR, global_step, lr_decay_epoch, lr_decay_rate, staircase=True)

        # Define optimizer 
        if OPTIMIZER == 'adam':
            #print("optimize with adam", LR)
            optimizer = tf.train.AdamOptimizer(LR)
        elif OPTIMIZER == 'LBFGS':
            raise NotImplementedError('LBFGS Optimizer')
        
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(loss, global_step=global_step)    

        # Set up gpu
        config = tf.ConfigProto()
        config.gpu_options.per_process_gpu_memory_fraction = 0.85 
        config.log_device_placement= True
        
        with tf.Session() as sess:
            # Init            
            mse = [0.] * num_iter
            sess.run(tf.global_variables_initializer())    
                        
            # Initial deep decoder output
            if find_best:
                if not os.path.exists('log'):
                    os.makedirs('log/')
                if not os.path.exists('result'):
                    os.makedirs('result/')
                saver = tf.train.Saver(max_to_keep=1)
                #saver.save(sess, os.path.join('log/', 'model.ckpt'), global_step=0)
                best_mse = 1000000.0
                best_img = sess.run(x)
                #save_img(best_img, 'result/', img_name, '0', image_mode, decoder_type, filter_size, upsample_mode) 
            
            # Feed dict
            if mask_feed is None:
                if type_measurements == 'circulant':#compressed sensing
                    feed_dict = {y: y_feed}
                elif type_measurements == 'identity':
                    if image_mode != '3D':
                        feed_dict = {A: A_feed, y: y_feed}  ########!!!!!!#####!!!!!!!
                    else:
                        feed_dict = {y: y_feed}
            else:#inpainting
                feed_dict = {y: y_feed}
                            
            # Optimize
            num_params = get_num_params()
            sess.graph.finalize()
            #print('\x1b[37mFinal graph size: %.2f MB\x1b[0m' % (tf.get_default_graph().as_graph_def().ByteSize() / 10e6))

            for i in range(num_iter):
                loss_, _ = sess.run([loss, train_op], feed_dict=feed_dict)
                #psnr = 10 * np.log10(1 * 1 / loss_) #PSNR
                mse[i] = loss_
       
                # Display
                #if i > 0 and i % 100 == 0:
                #    print ('\r[Iteration %05d] loss=%.9f' % (i, loss_), end='')
                
                # Best net
                if find_best and best_mse > 1.005 * loss_:
                    best_mse = loss_
                    #best_psnr = 10 * np.log10(1 * 1 / best_mse)
                    best_img = sess.run(x)
                    #saver.save(sess, os.path.join('log/', 'model.ckpt'), global_step=i + 1)
                         
            # Return final image or best found so far if `find_best`
            if find_best:
                out_img = best_img
                #mask_info = mask_info1[8:-4]
                # if save:
                #     save_img(out_img, 'result/', img_name, '{}'.format(i + 1), image_mode, decoder_type, filter_size, upsample_mode, num_channels_real, num_layers, input_size, mask_info, act_function)
                #print('Best MSE (wrt noisy) {}: {}: {}: {}: {}: {}: {}: {}: {}'.format(num_channels_real, num_layers, img_name, mask_info, decoder_type, filter_size, upsample_mode, upsample_factor, best_mse))
            else:
                out_img = sess.run(x)
                #mask_info = mask_info1[8:-4]
                # if save:
                #     save_img(out_img, 'result/', img_name, '{}'.format(i + 1), image_mode, decoder_type, filter_size, upsample_mode, num_channels_real, num_layers, input_size, mask_info, act_function)
                #print('FINAL MSE (wrt noisy) {}: {}: {}: {}: {}: {}: {}: {}: {}'.format(num_channels_real, num_layers, img_name, mask_info, decoder_type, filter_size, upsample_mode, upsample_factor, mse[-1]))
            if verbose:
                return mse, out_img, num_params
            else:
                return mse, out_img