示例#1
0
    def __init__(self,
                 loc=None,
                 scale_diag=None,
                 scale_identity_multiplier=None,
                 skewness=None,
                 tailweight=None,
                 distribution=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalLinearOperator"):
        """Construct VectorSinhArcsinhDiag distribution on `R^k`.

    The arguments `scale_diag` and `scale_identity_multiplier` combine to
    define the diagonal `scale` referred to in this class docstring:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier * ones(k))
    ```

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this

    Additional leading dimensions (if any) will index batches.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scale-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scale
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale`
        is the `Identity`.
      skewness:  Skewness parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      tailweight:  Tailweight parameter.  floating-point `Tensor` with shape
        broadcastable with `event_shape`.
      distribution: `tf.Distribution`-like instance. Distribution from which `k`
        iid samples are used as input to transformation `F`.  Default is
        `ds.Normal(0., 1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a VectorSinhArcsinhDiag sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
        parameters = locals()

        with ops.name_scope(name,
                            values=[
                                loc, scale_diag, scale_identity_multiplier,
                                skewness, tailweight
                            ]):
            loc = ops.convert_to_tensor(loc,
                                        name="loc") if loc is not None else loc
            tailweight = 1. if tailweight is None else tailweight
            skewness = 0. if skewness is None else skewness

            # Recall, with Z ~ Normal(0, 1),
            #   Y := loc + C * F(Z),
            #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
            #   C := 2 * scale / F(2)

            # Construct shapes and 'scale' out of the scale_* and loc kwargs.
            # scale_linop is only an intermediary to:
            #  1. get shapes from looking at loc and the two scale args.
            #  2. combine scale_diag with scale_identity_multiplier, which gives us
            #     'scale', which in turn gives us 'C'.
            scale_linop = distribution_util.make_diag_scale(
                loc=loc,
                scale_diag=scale_diag,
                scale_identity_multiplier=scale_identity_multiplier,
                validate_args=False,
                assert_positive=False)
            batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale(
                loc, scale_linop)
            # scale_linop.diag_part() is efficient since it is a diag type linop.
            scale_diag_part = scale_linop.diag_part()
            dtype = scale_diag_part.dtype

            if distribution is None:
                distribution = normal.Normal(loc=array_ops.zeros([],
                                                                 dtype=dtype),
                                             scale=array_ops.ones([],
                                                                  dtype=dtype),
                                             allow_nan_stats=allow_nan_stats)
            else:
                asserts = distribution_util.maybe_check_scalar_distribution(
                    distribution, dtype, validate_args)
                if asserts:
                    scale_diag_part = control_flow_ops.with_dependencies(
                        asserts, scale_diag_part)

            # Make the SAS bijector, 'F'.
            skewness = ops.convert_to_tensor(skewness,
                                             dtype=dtype,
                                             name="skewness")
            tailweight = ops.convert_to_tensor(tailweight,
                                               dtype=dtype,
                                               name="tailweight")
            f = bijectors.SinhArcsinh(skewness=skewness,
                                      tailweight=tailweight,
                                      event_ndims=1)

            # Make the Affine bijector, Z --> loc + C * Z.
            c = 2 * scale_diag_part / f.forward(
                ops.convert_to_tensor(2, dtype=dtype))
            affine = bijectors.Affine(shift=loc,
                                      scale_diag=c,
                                      validate_args=validate_args,
                                      event_ndims=1)

            bijector = bijectors.Chain([affine, f])

            super(VectorSinhArcsinhDiag,
                  self).__init__(distribution=distribution,
                                 bijector=bijector,
                                 batch_shape=batch_shape,
                                 event_shape=event_shape,
                                 validate_args=validate_args,
                                 name=name)
        self._parameters = parameters
        self._loc = loc
        self._scale = scale_linop
        self._tailweight = tailweight
        self._skewness = skewness
示例#2
0
  def __init__(self,
               loc,
               scale,
               skewness=None,
               tailweight=None,
               distribution=None,
               validate_args=False,
               allow_nan_stats=True,
               name="SinhArcsinh"):
    """Construct SinhArcsinh distribution on `(-inf, inf)`.

    Arguments `(loc, scale, skewness, tailweight)` must have broadcastable shape
    (indexing batch dimensions).  They must all have the same `dtype`.

    Args:
      loc: Floating-point `Tensor`.
      scale:  `Tensor` of same `dtype` as `loc`.
      skewness:  Skewness parameter.  Default is `0.0` (no skew).
      tailweight:  Tailweight parameter. Default is `1.0` (unchanged tailweight)
      distribution: `tf.Distribution`-like instance. Distribution that is
        transformed to produce this distribution.
        Default is `tf.distributions.Normal(0., 1.)`.
        Must be a scalar-batch, scalar-event distribution.  Typically
        `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is
        a function of non-trainable parameters. WARNING: If you backprop through
        a `SinhArcsinh` sample and `distribution` is not
        `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then
        the gradient will be incorrect!
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = locals()

    with ops.name_scope(name, values=[loc, scale, skewness, tailweight]):
      loc = ops.convert_to_tensor(loc, name="loc")
      dtype = loc.dtype
      scale = ops.convert_to_tensor(scale, name="scale", dtype=dtype)
      tailweight = 1. if tailweight is None else tailweight
      has_default_skewness = skewness is None
      skewness = 0. if skewness is None else skewness
      tailweight = ops.convert_to_tensor(
          tailweight, name="tailweight", dtype=dtype)
      skewness = ops.convert_to_tensor(skewness, name="skewness", dtype=dtype)

      batch_shape = distribution_util.get_broadcast_shape(
          loc, scale, tailweight, skewness)

      # Recall, with Z a random variable,
      #   Y := loc + C * F(Z),
      #   F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight )
      #   F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
      #   C := 2 * scale / F_0(2)
      if distribution is None:
        distribution = normal.Normal(
            loc=array_ops.zeros([], dtype=dtype),
            scale=array_ops.ones([], dtype=dtype),
            allow_nan_stats=allow_nan_stats)
      else:
        asserts = distribution_util.maybe_check_scalar_distribution(
            distribution, dtype, validate_args)
        if asserts:
          loc = control_flow_ops.with_dependencies(asserts, loc)

      # Make the SAS bijector, 'F'.
      f = bijectors.SinhArcsinh(
          skewness=skewness, tailweight=tailweight)
      if has_default_skewness:
        f_noskew = f
      else:
        f_noskew = bijectors.SinhArcsinh(
            skewness=skewness.dtype.as_numpy_dtype(0.),
            tailweight=tailweight)

      # Make the AffineScalar bijector, Z --> loc + scale * Z (2 / F_0(2))
      c = 2 * scale / f_noskew.forward(ops.convert_to_tensor(2, dtype=dtype))
      affine = bijectors.AffineScalar(
          shift=loc,
          scale=c,
          validate_args=validate_args)

      bijector = bijectors.Chain([affine, f])

      super(SinhArcsinh, self).__init__(
          distribution=distribution,
          bijector=bijector,
          batch_shape=batch_shape,
          validate_args=validate_args,
          name=name)
    self._parameters = parameters
    self._loc = loc
    self._scale = scale
    self._tailweight = tailweight
    self._skewness = skewness