def test_invalid_input(self): """Test that functions properly fail on invalid input.""" with self.assertRaisesRegexp(ValueError, 'Shapes .* are incompatible'): classifier_metrics.run_inception(array_ops.ones([7, 50, 50, 3])) p = array_ops.zeros([8, 10]) p_logits = array_ops.zeros([8, 10]) q = array_ops.zeros([10]) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence( array_ops.zeros([8, 10], dtype=dtypes.int32), p_logits, q) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence(p, array_ops.zeros( [8, 10], dtype=dtypes.int32), q) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence(p, p_logits, array_ops.zeros( [10], dtype=dtypes.int32)) with self.assertRaisesRegexp(ValueError, 'must have rank 2'): classifier_metrics._kl_divergence(array_ops.zeros([8]), p_logits, q) with self.assertRaisesRegexp(ValueError, 'must have rank 2'): classifier_metrics._kl_divergence(p, array_ops.zeros([8]), q) with self.assertRaisesRegexp(ValueError, 'must have rank 1'): classifier_metrics._kl_divergence(p, p_logits, array_ops.zeros([10, 8]))
def test_invalid_input(self): """Test that functions properly fail on invalid input.""" with self.assertRaisesRegexp(ValueError, 'Shapes .* are incompatible'): classifier_metrics.run_inception(array_ops.ones([7, 50, 50, 3])) p = array_ops.zeros([8, 10]) p_logits = array_ops.zeros([8, 10]) q = array_ops.zeros([10]) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence( array_ops.zeros([8, 10], dtype=dtypes.int32), p_logits, q) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence( p, array_ops.zeros([8, 10], dtype=dtypes.int32), q) with self.assertRaisesRegexp(ValueError, 'must be floating type'): classifier_metrics._kl_divergence( p, p_logits, array_ops.zeros([10], dtype=dtypes.int32)) with self.assertRaisesRegexp(ValueError, 'must have rank 2'): classifier_metrics._kl_divergence(array_ops.zeros([8]), p_logits, q) with self.assertRaisesRegexp(ValueError, 'must have rank 2'): classifier_metrics._kl_divergence(p, array_ops.zeros([8]), q) with self.assertRaisesRegexp(ValueError, 'must have rank 1'): classifier_metrics._kl_divergence(p, p_logits, array_ops.zeros([10, 8]))