示例#1
0
            def _get_coords_for_joint(joint_idx, parent_idx, child_angle_idx,
                                      coords):
                if parent_idx is None:  # joint_idx should be 0
                    coords[joint_idx] = K.zeros(base_shape[:-2] + [3, 1])
                    parent_bone = K.constant(
                        np.concatenate([
                            np.ones(base_shape),
                            np.zeros(base_shape),
                            np.zeros(base_shape)
                        ],
                                       axis=-2))
                else:
                    parent_bone = coords[parent_idx] - coords[joint_idx]
                    parent_bone_norm = K.sqrt(
                        K.sum(K.square(parent_bone), axis=-2, keepdims=True) +
                        K.epsilon())
                    parent_bone = parent_bone / parent_bone_norm

                for child_idx in body_graph[joint_idx]:
                    child_bone = tf.matmul(rotmat_list[child_angle_idx],
                                           parent_bone)
                    child_bone_idx = bone_idcs[(joint_idx, child_idx)]
                    child_bone = child_bone * K.reshape(
                        bone_len_list[child_bone_idx],
                        (child_bone.shape[0], 1, 1, 1))
                    coords[child_idx] = child_bone + coords[joint_idx]
                    child_angle_idx += 1

                for child_idx in body_graph[joint_idx]:
                    child_angle_idx, coords = _get_coords_for_joint(
                        child_idx, joint_idx, child_angle_idx, coords)

                return child_angle_idx, coords
示例#2
0
 def _get_bone_len(arg):
     bone_list = tf.unstack(arg[:, :, 0, :], axis=1)
     bones = [
         bone_list[j] - bone_list[i]
         for i, j in zip(members_from, members_to)
     ]
     bones = K.stack(bones, axis=1)
     return K.sqrt(K.sum(K.square(bones), axis=-1) + K.epsilon())
示例#3
0
    def __call__(self, x):
        regularization = 0.
        if self.l1:
            # X=K.eval(x)
            diff = x[1:] - x[:-1]
            regularization += K.mean(K.sqrt(diff**2 + 0.000001))

        return regularization * self.l1
示例#4
0
 def _get_avg_bone_len(arg):
     bone_list = tf.unstack(arg[:, :, 0, :], axis=1)
     bones = [
         bone_list[j] - bone_list[i]
         for i, j in zip(members_from, members_to)
     ]
     bones = K.expand_dims(K.stack(bones, axis=1), axis=2)
     bone_len = K.sqrt(
         K.sum(K.square(bones), axis=-1, keepdims=True) + K.epsilon())
     return K.mean(bone_len, axis=1, keepdims=True)
示例#5
0
    def call(self, inputs, **kwargs):
        input_shape = K.int_shape(inputs)
        tensor_input_shape = K.shape(inputs)

        # Prepare broadcasting shape.
        reduction_axes = list(range(len(input_shape)))
        del reduction_axes[self.axis]
        broadcast_shape = [1] * len(input_shape)
        broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
        broadcast_shape.insert(1, self.groups)

        reshape_group_shape = K.shape(inputs)
        group_axes = [reshape_group_shape[i] for i in range(len(input_shape))]
        group_axes[self.axis] = input_shape[self.axis] // self.groups
        group_axes.insert(1, self.groups)

        # reshape inputs to new group shape
        group_shape = [group_axes[0], self.groups] + group_axes[2:]
        group_shape = K.stack(group_shape)
        inputs = K.reshape(inputs, group_shape)

        group_reduction_axes = list(range(len(group_axes)))
        mean, variance = _moments(inputs,
                                  group_reduction_axes[2:],
                                  keep_dims=True)
        inputs = (inputs - mean) / (K.sqrt(variance + self.epsilon))

        # prepare broadcast shape
        inputs = K.reshape(inputs, group_shape)

        outputs = inputs

        # In this case we must explicitly broadcast all parameters.
        if self.scale:
            broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
            outputs = outputs * broadcast_gamma

        if self.center:
            broadcast_beta = K.reshape(self.beta, broadcast_shape)
            outputs = outputs + broadcast_beta

        # finally we reshape the output back to the input shape
        outputs = K.reshape(outputs, tensor_input_shape)

        return outputs
示例#6
0
    def call(self, x, mask=None):
        if self.mode == 0 or self.mode == 2:
            assert self.built, 'Layer must be built before being called'
            input_shape = K.int_shape(x)

            reduction_axes = list(range(len(input_shape)))
            del reduction_axes[self.axis]
            broadcast_shape = [1] * len(input_shape)
            broadcast_shape[self.axis] = input_shape[self.axis]

            mean_batch, var_batch = _moments(x,
                                             reduction_axes,
                                             shift=None,
                                             keep_dims=False)
            std_batch = (K.sqrt(var_batch + self.epsilon))

            r_max_value = K.get_value(self.r_max)
            r = std_batch / (K.sqrt(self.running_std + self.epsilon))
            r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value))

            d_max_value = K.get_value(self.d_max)
            d = (mean_batch - self.running_mean) / K.sqrt(self.running_std +
                                                          self.epsilon)
            d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value))

            if sorted(reduction_axes) == range(K.ndim(x))[:-1]:
                x_normed_batch = (x - mean_batch) / std_batch
                x_normed = (x_normed_batch * r + d) * self.gamma + self.beta
            else:
                # need broadcasting
                broadcast_mean = K.reshape(mean_batch, broadcast_shape)
                broadcast_std = K.reshape(std_batch, broadcast_shape)
                broadcast_r = K.reshape(r, broadcast_shape)
                broadcast_d = K.reshape(d, broadcast_shape)
                broadcast_beta = K.reshape(self.beta, broadcast_shape)
                broadcast_gamma = K.reshape(self.gamma, broadcast_shape)

                x_normed_batch = (x - broadcast_mean) / broadcast_std
                x_normed = (x_normed_batch * broadcast_r +
                            broadcast_d) * broadcast_gamma + broadcast_beta

            # explicit update to moving mean and standard deviation
            self.add_update([
                K.moving_average_update(self.running_mean, mean_batch,
                                        self.momentum),
                K.moving_average_update(self.running_std, std_batch**2,
                                        self.momentum)
            ], x)

            # update r_max and d_max
            r_val = self.r_max_value / (
                1 + (self.r_max_value - 1) * K.exp(-self.t))
            d_val = self.d_max_value / (1 + (
                (self.d_max_value / 1e-3) - 1) * K.exp(-(2 * self.t)))

            self.add_update([
                K.update(self.r_max, r_val),
                K.update(self.d_max, d_val),
                K.update_add(self.t, K.variable(np.array([self.t_delta])))
            ], x)

            if self.mode == 0:
                if sorted(reduction_axes) == range(K.ndim(x))[:-1]:
                    x_normed_running = K.batch_normalization(
                        x,
                        self.running_mean,
                        self.running_std,
                        self.beta,
                        self.gamma,
                        epsilon=self.epsilon)
                else:
                    # need broadcasting
                    broadcast_running_mean = K.reshape(self.running_mean,
                                                       broadcast_shape)
                    broadcast_running_std = K.reshape(self.running_std,
                                                      broadcast_shape)
                    broadcast_beta = K.reshape(self.beta, broadcast_shape)
                    broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
                    x_normed_running = K.batch_normalization(
                        x,
                        broadcast_running_mean,
                        broadcast_running_std,
                        broadcast_beta,
                        broadcast_gamma,
                        epsilon=self.epsilon)

                # pick the normalized form of x corresponding to the training phase
                # for batch renormalization, inference time remains same as batchnorm
                x_normed = K.in_train_phase(x_normed, x_normed_running)

        elif self.mode == 1:
            # sample-wise normalization
            m = K.mean(x, axis=self.axis, keepdims=True)
            std = K.sqrt(
                K.var(x, axis=self.axis, keepdims=True) + self.epsilon)
            x_normed_batch = (x - m) / (std + self.epsilon)

            r_max_value = K.get_value(self.r_max)
            r = std / (self.running_std + self.epsilon)
            r = K.stop_gradient(K.clip(r, 1 / r_max_value, r_max_value))

            d_max_value = K.get_value(self.d_max)
            d = (m - self.running_mean) / (self.running_std + self.epsilon)
            d = K.stop_gradient(K.clip(d, -d_max_value, d_max_value))

            x_normed = ((x_normed_batch * r) + d) * self.gamma + self.beta

            # update r_max and d_max
            t_val = K.get_value(self.t)
            r_val = self.r_max_value / (
                1 + (self.r_max_value - 1) * np.exp(-t_val))
            d_val = self.d_max_value / (1 + (
                (self.d_max_value / 1e-3) - 1) * np.exp(-(2 * t_val)))
            t_val += float(self.t_delta)

            self.add_update([
                K.update(self.r_max, r_val),
                K.update(self.d_max, d_val),
                K.update(self.t, t_val)
            ], x)

        return x_normed
示例#7
0
文件: edm.py 项目: tobytoy/MotionGAN
def edm(x, y=None):
    with K.name_scope('edm'):
        y = x if y is None else y
        x = K.expand_dims(x, axis=1)
        y = K.expand_dims(y, axis=2)
        return K.sqrt(K.sum(K.square(x - y), axis=-1) + K.epsilon())
示例#8
0
 def __call__(self, p):
     p *= K.cast(p >= 0., K.floatx())
     return p / (K.epsilon() +
                 K.sqrt(K.sum(K.square(p), axis=self.axis, keepdims=True)))
示例#9
0
def rmse(y_true, y_pred):
    return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis=-1))