示例#1
0
    def __init__(self, layers=None, name=None):
        self.layers = []  # Stack of layers.
        self.model = None  # Internal Model instance.
        self.inputs = []  # List of input tensors
        self.outputs = []  # List of length 1: the output tensor (unique).
        self._trainable = True
        self._initial_weights = None

        # Model attributes.
        self.inbound_nodes = []
        self.outbound_nodes = []
        self.built = False

        # Set model name.
        if not name:
            prefix = 'sequential_'
            name = prefix + str(K.get_uid(prefix))
        self.name = name

        # The following properties are not actually used by Keras;
        # they exist for compatibility with TF's variable scoping mechanism.
        self._updates = []
        self._losses = []
        self._scope = None
        self._reuse = None
        self._base_name = name
        self._graph = ops.get_default_graph()

        # Add to the model any layers passed to the constructor.
        if layers:
            for layer in layers:
                self.add(layer)
示例#2
0
  def __init__(self, layers=None, name=None):
    self.layers = []  # Stack of layers.
    self.model = None  # Internal Model instance.
    self.inputs = []  # List of input tensors
    self.outputs = []  # List of length 1: the output tensor (unique).
    self._trainable = True
    self._initial_weights = None

    # Model attributes.
    self.inbound_nodes = []
    self.outbound_nodes = []
    self.built = False

    # Set model name.
    if not name:
      prefix = 'sequential_'
      name = prefix + str(K.get_uid(prefix))
    self.name = name

    # The following properties are not actually used by Keras;
    # they exist for compatibility with TF's variable scoping mechanism.
    self._updates = []
    self._losses = []
    self._scope = None
    self._reuse = None
    self._base_name = name
    self._graph = ops.get_default_graph()

    # Add to the model any layers passed to the constructor.
    if layers:
      for layer in layers:
        self.add(layer)
示例#3
0
    def __init__(self, layers=None, name=None):
        self.layers = []  # Stack of layers.
        self.model = None  # Internal Model instance.
        self.inputs = []  # List of input tensors
        self.outputs = []  # List of length 1: the output tensor (unique).
        self._trainable = True
        self._initial_weights = None

        # Model attributes.
        self.inbound_nodes = []
        self.outbound_nodes = []
        self.built = False

        # Set model name.
        if not name:
            prefix = 'sequential_'
            name = prefix + str(K.get_uid(prefix))
        self.name = name

        # Add to the model any layers passed to the constructor.
        if layers:
            for layer in layers:
                self.add(layer)
示例#4
0
  def __init__(self, layers=None, name=None):
    self.layers = []  # Stack of layers.
    self.model = None  # Internal Model instance.
    self.inputs = []  # List of input tensors
    self.outputs = []  # List of length 1: the output tensor (unique).
    self._trainable = True
    self._initial_weights = None

    # Model attributes.
    self.inbound_nodes = []
    self.outbound_nodes = []
    self.built = False

    # Set model name.
    if not name:
      prefix = 'sequential_'
      name = prefix + str(K.get_uid(prefix))
    self.name = name

    # Add to the model any layers passed to the constructor.
    if layers:
      for layer in layers:
        self.add(layer)