def yolo_eval(yolo_outputs, image_shape, max_boxes=10, score_threshold=.6, iou_threshold=.5): """Evaluate YOLO model on given input batch and return filtered boxes.""" box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs boxes = yolo_boxes_to_corners(box_xy, box_wh) boxes, scores, classes = yolo_filter_boxes(boxes, box_confidence, box_class_probs, threshold=score_threshold) # Scale boxes back to original image shape. height = image_shape[0] width = image_shape[1] image_dims = K.stack([height, width, height, width]) image_dims = K.reshape(image_dims, [1, 4]) boxes = boxes * image_dims # TODO: Something must be done about this ugly hack! max_boxes_tensor = K.variable(max_boxes, dtype='int32') K.get_session().run(tf.variables_initializer([max_boxes_tensor])) nms_index = tf.image.non_max_suppression(boxes, scores, max_boxes_tensor, iou_threshold=iou_threshold) boxes = K.gather(boxes, nms_index) scores = K.gather(scores, nms_index) classes = K.gather(classes, nms_index) return boxes, scores, classes
def call(self, inputs): if self._reshape_required: reshaped_inputs = [] input_ndims = list(map(K.ndim, inputs)) if None not in input_ndims: # If ranks of all inputs are available, # we simply expand each of them at axis=1 # until all of them have the same rank. max_ndim = max(input_ndims) for x in inputs: x_ndim = K.ndim(x) for _ in range(max_ndim - x_ndim): x = K.expand_dims(x, 1) reshaped_inputs.append(x) return self._merge_function(reshaped_inputs) else: # Transpose all inputs so that batch size is the last dimension. # (batch_size, dim1, dim2, ... ) -> (dim1, dim2, ... , batch_size) transposed = False for x in inputs: x_ndim = K.ndim(x) if x_ndim is None: x_shape = K.shape(x) batch_size = x_shape[0] new_shape = K.concatenate([x_shape[1:], K.expand_dims(batch_size)]) x_transposed = K.reshape(x, K.stack([batch_size, K.prod(x_shape[1:])])) x_transposed = K.permute_dimensions(x_transposed, (1, 0)) x_transposed = K.reshape(x_transposed, new_shape) reshaped_inputs.append(x_transposed) transposed = True elif x_ndim > 1: dims = list(range(1, x_ndim)) + [0] reshaped_inputs.append(K.permute_dimensions(x, dims)) transposed = True else: # We don't transpose inputs if they are 1D vectors or scalars. reshaped_inputs.append(x) y = self._merge_function(reshaped_inputs) y_ndim = K.ndim(y) if transposed: # If inputs have been transposed, we have to transpose the output too. if y_ndim is None: y_shape = K.shape(y) y_ndim = K.shape(y_shape)[0] batch_size = y_shape[y_ndim - 1] new_shape = K.concatenate( [K.expand_dims(batch_size), y_shape[:y_ndim - 1]]) y = K.reshape(y, (-1, batch_size)) y = K.permute_dimensions(y, (1, 0)) y = K.reshape(y, new_shape) elif y_ndim > 1: dims = [y_ndim - 1] + list(range(y_ndim - 1)) y = K.permute_dimensions(y, dims) return y else: return self._merge_function(inputs)
def _time_distributed_dense(x, w, b=None, dropout=None, input_dim=None, output_dim=None, timesteps=None, training=None): """Apply `y . w + b` for every temporal slice y of x. Arguments: x: input tensor. w: weight matrix. b: optional bias vector. dropout: wether to apply dropout (same dropout mask for every temporal slice of the input). input_dim: integer; optional dimensionality of the input. output_dim: integer; optional dimensionality of the output. timesteps: integer; optional number of timesteps. training: training phase tensor or boolean. Returns: Output tensor. """ if not input_dim: input_dim = K.shape(x)[2] if not timesteps: timesteps = K.shape(x)[1] if not output_dim: output_dim = K.shape(w)[1] if dropout is not None and 0. < dropout < 1.: # apply the same dropout pattern at every timestep ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim))) dropout_matrix = K.dropout(ones, dropout) expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps) x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training) # collapse time dimension and batch dimension together x = K.reshape(x, (-1, input_dim)) x = K.dot(x, w) if b is not None: x = K.bias_add(x, b) # reshape to 3D tensor if K.backend() == 'tensorflow': x = K.reshape(x, K.stack([-1, timesteps, output_dim])) x.set_shape([None, None, output_dim]) else: x = K.reshape(x, (-1, timesteps, output_dim)) return x