def before_run(self, run_context): del run_context # Unused by feature importance summary saver hook. requests = { "global_step": self._global_step_tensor, "feature_names": self._feature_names_tensor, "feature_usage_counts": self._feature_usage_counts_tensor, "feature_gains": self._feature_gains_tensor } return SessionRunArgs(requests)
def before_run(self, run_context): # pylint: disable=unused-argument requests = {"global_step": self._global_step_tensor} if self._request_summary: if self._summary_op is not None: requests["summary"] = self._summary_op elif self._scaffold.summary_op is not None: requests["summary"] = self._scaffold.summary_op return SessionRunArgs(requests)
def before_run(self, run_context): # pylint: disable=unused-argument if self._last_saved_time is None: # Write graph in the first call. training_util.write_graph( ops.get_default_graph().as_graph_def(add_shapes=True), self._checkpoint_dir, "graph.pbtxt") self._summary_writer.add_graph(ops.get_default_graph()) return SessionRunArgs(self._global_step_tensor)
def before_run(self, run_context): # pylint: disable=unused-argument if self._iter_count % self._every_n_iter == 0: return SessionRunArgs(self._current_tensors) else: return None
def before_run(self, run_context): # pylint: disable=unused-argument return SessionRunArgs(self._loss_tensor)