def main(): # If the training and test sets aren't stored locally, download them. if not os.path.exists(IRIS_TRAINING): raw = urlopen(IRIS_TRAINING_URL).read() with open(IRIS_TRAINING, "wb") as f: f.write(raw) if not os.path.exists(IRIS_TEST): raw = urlopen(IRIS_TEST_URL).read() with open(IRIS_TEST, "wb") as f: f.write(raw) # Load datasets. training_set = load_csv_with_header(filename=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.float32) test_set = load_csv_with_header(filename=IRIS_TEST, target_dtype=np.int, features_dtype=np.float32) # Specify that all features have real-value data feature_columns = [real_valued_column("", dimension=4)] # Build 3 layer DNN with 10, 20, 10 units respectively. classifier = DNNClassifier(feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, model_dir="/tmp/iris_model") # Define the training inputs def get_train_inputs(): x = tf.constant(training_set.data) y = tf.constant(training_set.target) return x, y # Fit model. classifier.fit(input_fn=get_train_inputs, steps=2000) # Define the test inputs def get_test_inputs(): x = tf.constant(test_set.data) y = tf.constant(test_set.target) return x, y # Evaluate accuracy. accuracy_score = classifier.evaluate(input_fn=get_test_inputs, steps=1)["accuracy"] print("\nTest Accuracy: {0:f}\n".format(accuracy_score)) # Classify two new flower samples. def new_samples(): return np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32) predictions = list(classifier.predict(input_fn=new_samples)) print("New Samples, Class Predictions: {}\n".format(predictions))
def main(_): mnist = input_data.read_data_sets("/tmp/data") X_train = mnist.train.images X_test = mnist.test.images Y_train = mnist.train.labels.astype("int") Y_test = mnist.test.labels.astype("int") config = RunConfig(tf_random_seed=42, save_checkpoints_secs=10) feature_cols = tf.contrib.learn.infer_real_valued_columns_from_input( X_train) validation_monitor = monitors.ValidationMonitor(x=X_test, y=Y_test, every_n_steps=100) dnn_clf = DNNClassifier( hidden_units=[300, 100], n_classes=10, feature_columns=feature_cols, config=config, model_dir="/home/mtb/Projects/machine_learning/tensorflow/mnist") dnn_clf.fit(X_train, Y_train, batch_size=50, steps=4000, monitors=[validation_monitor]) accuracy_score = dnn_clf.evaluate(x=X_test, y=Y_test)["accuracy"] print(' accuracy_score: {0} '.format(accuracy_score))
def main(): training_data = pd.read_csv('../data/20180105_label.csv', skipinitialspace=True, engine='python', dtype=np.float64, iterator=True, ) test_data = pd.read_csv('../data/20180107_label.csv', skipinitialspace=True, engine='python', dtype=np.float64, iterator=True, ) deep_columns = create_columns(CONTINUOUS_COLUMNS) model = DNNClassifier(feature_columns=deep_columns, model_dir='./model', hidden_units=[10, 10], n_classes=2, input_layer_min_slice_size=10000) tf.logging.set_verbosity(tf.logging.INFO) training_data_chunk = training_data.get_chunk(1000000000) model.fit(input_fn=lambda: input_fn(training_data_chunk), steps=100) tf.logging.info("end fit model") test_data_chunk = test_data.get_chunk(10000) accuracy = model.evaluate(input_fn=lambda: input_fn(test_data_chunk), steps=100)['accuracy'] print(accuracy * 100)
def train_model(item_type): model_dir = "models/" + item_type.lower().replace(" ", "_") if os.path.exists(model_dir): return print("==> Training model for '%s'" % item_type) csv_filename = filename = "data/" + item_type.lower().replace(" ", "_") + ".csv" df_all = pd.read_csv(csv_filename, skipinitialspace=True, encoding='utf-8') df_all.fillna(0.0, inplace=True) # Convert the price to a bucket representing a range df_all['price_chaos'] = (df_all['price_chaos'].apply(util.price_bucket)).astype(int) # Hash the item type to a number df_all['itemType'] = (df_all['itemType'].apply(lambda x: util.type_hash[x])).astype(float) LABEL_COLUMN = util.LABEL_COLUMN # Split the data 80/20 training/test percent_test = 20 n = (len(df_all) * percent_test)/100 df_train = df_all.head(len(df_all) - n) df_test = df_all.tail(n) train_x = df_train.ix[:, df_train.columns != LABEL_COLUMN].as_matrix().astype(float) train_y = df_train.as_matrix([LABEL_COLUMN]) test_x = df_test.ix[:, df_test.columns != LABEL_COLUMN].as_matrix().astype(float) test_y = df_test.as_matrix([LABEL_COLUMN]) deep_columns = tf.contrib.learn.infer_real_valued_columns_from_input(train_x) hidden_units = util.get_hidden_units(len(df_train.columns)-1) model = DNNClassifier(model_dir=model_dir, feature_columns=deep_columns, hidden_units=hidden_units, n_classes=len(util.bins), enable_centered_bias=True) steps = len(df_train)/75 sessions = (steps/500)+2 for i in range(sessions): model.fit(train_x, train_y, steps=500, batch_size=5000) results = model.evaluate(test_x, test_y, steps=1, batch_size=df_test.size) # Print some predictions from the test data predictions = df_test.sample(10) v = model.predict_proba(predictions.ix[:, df_test.columns != LABEL_COLUMN].as_matrix().astype(float), batch_size=10) price_map = [] for i in v: # take the top 5 most likely price ranges top_largest = i.argsort()[-5:][::-1] prices = {} for p in top_largest: prices[util.get_bin_label(p)] = float(round(100*i[p], 1)) price_map.append(prices) for r in price_map: print r
def DNNClassifierTrainTask(self, datasource, train_path, test_path, **kwargs): steps = kwargs.pop("steps", 2000) if datasource == 'system': # data from system training_set = load_system_dataset(train_path) if test_path: test_set = load_system_dataset(test_path) feature_columns = [real_valued_column("", dimension=4)] classifier = DNNClassifier(feature_columns=feature_columns, **kwargs # hidden_units=[10, 20, 10], # n_classes=3 ) if test_path: classifier.fit(x=training_set.data, y=training_set.target, steps=steps) accuracy_score = classifier.evaluate(x=test_set.data, y=test_set.target)["accuracy"] return accuracy_score
def main(): training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename='./iris_data/iris_training.csv', target_dtype=np.int, features_dtype=np.float32) test_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename='./iris_data/iris_test.csv', target_dtype=np.int, features_dtype=np.float32) feature_columns = [tf.feature_column.numeric_column("x", shape=[4])] clf = DNNClassifier(hidden_units=[10, 20, 10], feature_columns=feature_columns, model_dir='./iris_model', n_classes=3) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(training_set.data)}, y=np.array(training_set.target), num_epochs=None, shuffle=True) clf.fit(input_fn=train_input_fn, steps=2000) test_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": np.array(test_set.data)}, y=np.array(test_set.target), num_epochs=1, shuffle=False) accuracy_score = clf.evaluate(input_fn=test_input_fn)["accuracy"] print("\nTest Accuracy: {0:f}\n".format(accuracy_score)) new_samples = np.array([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32) predict_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": new_samples}, num_epochs=1, shuffle=False) predictions = list(clf.predict(input_fn=predict_input_fn)) print predictions print("New Samples, Class Predictions: {}\n".format(predictions))
class DNN(BaseEstimator, ClassifierMixin): def __init__(self, n_classes, type="w2v", hidden_units=[10, 20, 10], num_features=100, context=10, method=1): #if type=="w2v": #self.model = w2v_helpers.get_word2vec(num_features, context, method) self.type = type self.classifier = DNNClassifier(hidden_units=hidden_units, n_classes=n_classes) def pre_transformX(self, df, colnames, df_test=None, n_gram=None): data = None if self.type == "w2v": data = features_helpers.create_sentences(df, colnames) data = features_helpers.transform_to_w2v_sentences( data, self.model) return data.as_matrix() else: x_train, x_test = features_helpers.transform_to_bow( df, df_test, colnames, n_gram) return x_train, x_test def pre_transformY(self, df, list_dict): y = map(lambda w: list_dict.index(w), list(df)) return np.array(y) def fit(self, X, y=None): self.classifier.fit(x=X, y=y, steps=200) def predict(self, X, y=None): return self.classifier.predict(X) def evaluate(self, X, Y): return self.classifier.evaluate(x=X, y=Y)["accuracy"] def score(self, X, y, sample_weight=None): return super(DNN, self).score(X, y, sample_weight)
def dnn_main(): x_train, x_test, y_train, y_test = load_SpamBase( "../data/spambase/spambase.data") feature_columns = infer_real_valued_columns_from_input(x_train) print(feature_columns) # hidden_units = [30, 10],表明具有两层隐藏层,每层节点数分别为30和10 classifier = DNNClassifier(feature_columns=feature_columns, hidden_units=[30, 10], n_classes=2) # steps=500表明训练500个批次,batch_size=10表明每个批次有10个训练数据。 # 一个epoch指的是使用全部数据集进行一次训练。进行训练时一个epoch可能更新了若干次参数。epoch_num为指定的epoch次数。 # 一个step或一次iteration指的是更新一次参数,每次更新使用数据集中的batch_size个数据。 # 注意: 使用相同的数据集,epoch也相同时,参数更新此时不一定是相同的,这时候会取决于batch_size。 # iteration或step的总数为(数据总数 / batch_size + 1) * epoch_num # 每个epoch都会进行shuffle,对要输入的数据进行重新排序,分成不同的batch。 classifier.fit(x_train, y_train, steps=500, batch_size=10) y_predict = list(classifier.predict(x_test, as_iterable=True)) #y_predict = classifier.predict(x_test) #print y_predict score = metrics.accuracy_score(y_test, y_predict) print('Accuracy: {0:f}'.format(score))
print('============================================================') for classifier, acc, cv_acc in results: print( 'Classifier = {}: Accuracy = {} || Mean Cross Val Accuracy scores = {}' .format(classifier, acc, cv_acc)) for name, bp in bestparams: print('============================================================') print('{}-classifier GridSearch Best Params'.format(name)) print('============================================================') display(bp) print() print() feature_columns = [ tf.contrib.layers.real_valued_column("", dimension=len(X[0])) ] dl_clf = DNNClassifier(hidden_units=[10, 20, 10], n_classes=2, feature_columns=feature_columns, model_dir="/tmp/ilpd") dl_clf.fit(X_train, y_train, steps=4000) predictions = list(dl_clf.predict(X_test, as_iterable=True)) acc = accuracy_score(y_test, predictions) print('============================================================') print('Classifier = {}: Accuracy = {} '.format(DNNClassifier, acc)) print('============================================================') print('{}-classifier GridSearch Best Params'.format(DNNClassifier)) display(dl_clf.params) print('============================================================')
results, dataframes, best_parameters = parameter_tuning(models, X_train, X_test, y_train, y_test) print() print('============================================================') for classifier, acc, cv_acc in results: print('{}: Accuracy with Best Parameters = {}% || Mean Cross Validation Accuracy = {}%'.format(classifier, round(acc*100,4), round(cv_acc*100,4))) print() for name, bp in best_parameters: print('============================================================') print('{} classifier GridSearch Best Parameters'.format(name)) display(bp) print() print() # Deep Learning using Tensor flow feature_columns = [tf.contrib.layers.real_valued_column("", dimension=len(X[0]))] deep_learning = DNNClassifier(hidden_units=[10,20,10], feature_columns=feature_columns, model_dir="/tmp/iris") deep_learning.fit(X_train, y_train, steps=1500) predictions = list(deep_learning.predict(X_test, as_iterable=True)) acc = accuracy_score(predictions, predictions) print('============================================================') print('Deep Learning classifier Accuracy = ', round(acc*100,4),'%') print('------------------------------------------------------------') print('Deep Learning classifier Best Parameters') display(deep_learning.params) print('***************** Execution Completed **********************') print('------------------------------------------------------------')
type=str) parse = parser.parse_args() TRAIN_DATASET = parse.train TEST_DATASET = parse.test OUTPUT_PATH = parse.output np.random.seed(19260817) train_set = pandas.read_csv(TRAIN_DATASET) test_set = pandas.read_csv(TEST_DATASET) encoder = LabelEncoder().fit(train_set["species"]) train = train_set.drop(["species", "id"], axis=1).values label = encoder.transform(train_set["species"]) test = test_set.drop(["id"], axis=1).values scaler = StandardScaler().fit(train) train = scaler.transform(train) scaler = StandardScaler().fit(test) test = scaler.transform(test) feature_columns = [real_valued_column("", dimension=192)] classifier = DNNClassifier(feature_columns=feature_columns, n_classes=99, hidden_units=[1024, 512, 256], optimizer=tf.train.AdamOptimizer) classifier.fit(x=train, y=label, steps=1000) output = classifier.predict(test) output_prob = classifier.predict_proba(test) test_id = test_set.pop("id") result = pandas.DataFrame(output_prob, index=test_id, columns=encoder.classes_) result.to_csv(OUTPUT_PATH)
l.remove(l[0]) l = np.array(l) labels = l[:, :1] data = l[:, 1:] return to_int(data), formalize(to_int(labels), 10) def load_test_data(): l = [] with open("test.csv") as f: lines = csv.reader(f) for line in lines: l.append(line) l.remove(l[0]) return to_int(l) train_images, train_labels = load_train_data() test_images = load_test_data() print(train_images[0]) feature_columns = infer_real_valued_columns_from_input(train_images) clf = DNNClassifier([100], feature_columns, n_classes=10) print(train_images.shape) print(train_labels.shape) clf.fit(train_images, train_labels) print("done training") pred = clf.predict(test_images[0]) print(pred)
#config = RunConfig(tf_random_seed = 42) # Extracting features from the training data feature_columns = infer_real_valued_columns_from_input(X_train) # Create the DNN with two hidden layers (300 neurons and 100 neurons) dnn_clf = DNNClassifier(hidden_units=[300, 100], n_classes=10, feature_columns=feature_columns) #config = config) #Wrapper dnn_clf = SKCompat(dnn_clf) # Train DNN with mini-batch descent dnn_clf.fit(X_train, y_train, batch_size=64, steps=5000) # In[1]: # VizWiz daatset import os import json from pprint import pprint # In[2]: import requests base_url = 'https://ivc.ischool.utexas.edu/VizWiz/data' split = 'train' annFile = '%s/Annotations/%s.json' % (base_url, split)