def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): """Returns prediction and loss for mean squared error regression.""" with ops.op_scope([tensor_in, labels], name, "mean_squared_error_regressor"): predictions = nn.xw_plus_b(tensor_in, weights, biases) if len(labels.get_shape()) == 1 and len(predictions.get_shape()) == 2: predictions = array_ops_.squeeze(predictions, squeeze_dims=[1]) return predictions, loss_ops.sum_of_squares(predictions, labels)