示例#1
0
    def test_mpi_allreduce_cpu(self):
        """Test on CPU that the allreduce correctly sums 1D, 2D, 3D tensors."""
        with mpi.Session() as session:
            size = session.run(mpi.size())

            dtypes = [tf.int32, tf.float32]
            dims = [1, 2, 3]
            for dtype, dim in itertools.product(dtypes, dims):
                tf.set_random_seed(1234)
                tensor = tf.random_uniform([17] * dim, -100, 100,
                                           dtype=dtype)
                summed = mpi.allreduce(tensor, average=False)
                multiplied = tensor * size
                max_difference = tf.reduce_max(tf.abs(summed - multiplied))

                # Threshold for floating point equality depends on number of
                # ranks, since we're comparing against precise multiplication.
                if size <= 3:
                    threshold = 0
                elif size < 10:
                    threshold = 1e-4
                elif size < 15:
                    threshold = 5e-4
                else:
                    break

                diff = session.run(max_difference)
                self.assertTrue(diff <= threshold,
                                "mpi.allreduce produces incorrect results")
示例#2
0
    def test_mpi_allreduce_error(self):
        """Test that the allreduce raises an error if different ranks try to
        send tensors of different rank or dimension."""
        with mpi.Session() as session:
            rank = session.run(mpi.rank())
            size = session.run(mpi.size())

            # This test does not apply if there is only one worker.
            if size == 1:
                return

            # Same rank, different dimension
            tf.set_random_seed(1234)
            dims = [17 + rank] * 3
            tensor = tf.random_uniform(dims, -1.0, 1.0)
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(mpi.allreduce(tensor))

            # Same number of elements, different rank
            tf.set_random_seed(1234)
            if rank == 0:
                dims = [17, 23 * 57]
            else:
                dims = [17, 23, 57]
            tensor = tf.random_uniform(dims, -1.0, 1.0)
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(mpi.allreduce(tensor))
示例#3
0
    def test_mpi_allgather_variable_size(self):
        """Test that the allgather correctly gathers 1D, 2D, 3D tensors,
        even if those tensors have different sizes along the first dim."""
        with mpi.Session() as session:
            size = session.run(mpi.size())
            rank = session.run(mpi.rank())

            dtypes = tf.int32, tf.float32
            dims = 1, 2, 3
            for dtype, dim in itertools.product(dtypes, dims):
                # Support tests up to MPI Size of 35
                if size > 35:
                    break

                tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5
                tensor_sizes = tensor_sizes[:size]

                tensor = tf.ones([tensor_sizes[rank]] + [17] * (dim - 1),
                                 dtype=dtype) * rank
                gathered = mpi.allgather(tensor)

                gathered_tensor = session.run(gathered)
                expected_size = sum(tensor_sizes)
                self.assertEqual(list(gathered_tensor.shape),
                                 [expected_size] + [17] * (dim - 1))

                for i in range(size):
                    rank_size = [tensor_sizes[i]] + [17] * (dim - 1)
                    rank_tensor = tf.slice(
                        gathered, [sum(tensor_sizes[:i])] + [0] * (dim - 1),
                        rank_size)
                    self.assertEqual(list(rank_tensor.shape), rank_size)
                    self.assertTrue(
                        session.run(tf.reduce_all(tf.equal(rank_tensor, i))),
                        "mpi.allgather produces incorrect gathered tensor")
示例#4
0
    def test_mpi_allreduce_gpu(self):
        """Test that the allreduce works on GPUs.

        This test will crash badly if used with an MPI implementation that does
        not support GPU memory transfers directly, as it will call MPI_Send on
        a GPU data pointer."""
        # Only do this test if there are GPUs available.
        if not tf.test.is_gpu_available(cuda_only=True):
            return

        no_gpus = tf.GPUOptions(visible_device_list="")
        cpu_config = tf.ConfigProto(gpu_options=no_gpus)
        with mpi.Session(config=cpu_config) as session:
            local_rank = session.run(mpi.local_rank())

        one_gpu = tf.GPUOptions(visible_device_list=str(local_rank))
        gpu_config = tf.ConfigProto(gpu_options=one_gpu)
        with mpi.Session(config=gpu_config) as session:
            size = session.run(mpi.size())

            dtype = tf.float32
            dim = 3
            with tf.device("/gpu:0"):
                tf.set_random_seed(1234)
                tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype)
                summed = mpi.allreduce(tensor, average=False)
                multiplied = tensor * size
                max_difference = tf.reduce_max(tf.abs(summed - multiplied))

            # Threshold for floating point equality depends on number of
            # ranks, since we're comparing against precise multiplication.
            if size <= 3:
                threshold = 0
            elif size < 10:
                threshold = 1e-4
            elif size < 15:
                threshold = 5e-4
            else:
                return

            diff = session.run(max_difference)
            self.assertTrue(diff <= threshold,
                            "mpi.allreduce on GPU produces incorrect results")
示例#5
0
    def test_mpi_allgather(self):
        # Get MPI rank
        my_rank = int(os.environ['PMI_RANK'])
        num_ranks = int(os.environ['PMI_SIZE'])

        indices_per_rank = 100
        tensor_width = 10

        # Create IndexedSlices for each rank, some with overlapping indices.
        to_gather_indices = []
        to_gather_values = []
        to_gather = []
        for rank_id in range(num_ranks):
            indices = []
            values = []
            my_multiple = rank_id + 1
            current_index = my_multiple
            for i in range(indices_per_rank):
                indices.append(current_index)
                ones_tensor = tf.ones([tensor_width])
                values.append(
                    tf.multiply(
                        ones_tensor,
                        tf.fill(ones_tensor.get_shape(),
                                float(current_index))))
                current_index += my_multiple
            concat_ind = tf.stack(indices)
            concat_vals = tf.stack(values)
            to_gather_indices.append(concat_ind)
            to_gather_values.append(concat_vals)
            to_gather.append(tf.IndexedSlices(concat_vals, concat_ind))

        # Collect the local IndexedSlices (indices and values) to create
        # correct IndexedSlices output.
        correct_gather_indices = tf.concat(to_gather_indices, 0)
        correct_gather_values = tf.concat(to_gather_values, 0)
        correct_gather = tf.IndexedSlices(correct_gather_values,
                                          correct_gather_indices)

        all_gather = mpi.allreduce(to_gather[my_rank], average_allgather)

        # NOTE: This assumes that device IDs are numbered the same as ranks.
        gpu_options = tf.GPUOptions(visible_device_list=str(my_rank))
        config = tf.ConfigProto(gpu_options=gpu_options)

        # MPI Session to test allgather.
        with mpi.Session(config=config) as sess:
            sess.run(tf.global_variables_initializer())

            all_gathered, local_gathered = sess.run(
                [all_gather, correct_gather])

            # Compare all_gathered with local_gathered.
            self.checkAllgather(num_ranks, all_gathered, local_gathered)
示例#6
0
    def test_mpi_allgather_type_error(self):
        """Test that the allgather returns an error if the types being gathered
        differ among the processes"""
        with mpi.Session() as session:
            rank = session.run(mpi.rank())
            size = session.run(mpi.size())

            # This test does not apply if there is only one worker.
            if size == 1:
                return

            tensor_size = [17] * 3
            dtype = tf.int32 if rank % 2 == 0 else tf.float32
            tensor = tf.ones(tensor_size, dtype=dtype) * rank
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(mpi.allgather(tensor))
示例#7
0
    def test_mpi_allgather_error(self):
        """Test that the allgather returns an error if any dimension besides
        the first is different among the tensors being gathered."""
        with mpi.Session() as session:
            rank = session.run(mpi.rank())
            size = session.run(mpi.size())

            # This test does not apply if there is only one worker.
            if size == 1:
                return

            tensor_size = [17] * 3
            tensor_size[1] = 10 * (rank + 1)
            tensor = tf.ones(tensor_size, dtype=tf.float32) * rank
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(mpi.allgather(tensor))
示例#8
0
    def test_mpi_allreduce_type_error(self):
        """Test that the allreduce raises an error if different ranks try to
        send tensors of different type."""
        with mpi.Session() as session:
            rank = session.run(mpi.rank())
            size = session.run(mpi.size())

            # This test does not apply if there is only one worker.
            if size == 1:
                return

            # Same rank, different dimension
            dims = [17] * 3
            tensor = tf.ones(dims,
                             dtype=tf.int32 if rank % 2 == 0 else tf.float32)
            with self.assertRaises(tf.errors.FailedPreconditionError):
                session.run(mpi.allreduce(tensor))
示例#9
0
    def test_mpi_allgather(self):
        """Test that the allgather correctly gathers 1D, 2D, 3D tensors."""
        with mpi.Session() as session:
            size = session.run(mpi.size())
            rank = session.run(mpi.rank())

            dtypes = tf.int32, tf.float32
            dims = 1, 2, 3
            for dtype, dim in itertools.product(dtypes, dims):
                tensor = tf.ones([17] * dim, dtype=dtype) * rank
                gathered = mpi.allgather(tensor)

                gathered_tensor = session.run(gathered)
                self.assertEqual(list(gathered_tensor.shape),
                                 [17 * size] + [17] * (dim - 1))

                for i in range(size):
                    rank_tensor = tf.slice(gathered_tensor,
                                           [i * 17] + [0] * (dim - 1),
                                           [17] + [-1] * (dim - 1))
                    self.assertEqual(list(rank_tensor.shape), [17] * dim)
                    self.assertTrue(
                        session.run(tf.reduce_all(tf.equal(rank_tensor, i))),
                        "mpi.allgather produces incorrect gathered tensor")
示例#10
0
 def test_mpi_size(self):
     """Test that the size returned by mpi.size() is correct."""
     _, true_size = mpi_env_rank_and_size()
     with mpi.Session() as session:
         size = session.run(mpi.size())
         self.assertEqual(true_size, size)
示例#11
0
 def test_mpi_rank(self):
     """Test that the rank returned by mpi.rank() is correct."""
     true_rank, _ = mpi_env_rank_and_size()
     with mpi.Session() as session:
         rank = session.run(mpi.rank())
         self.assertEqual(true_rank, rank)
    def test_mpi_allreduce(self):
        # Get MPI rank
        my_rank = int(os.environ['PMI_RANK'])
        num_ranks = int(os.environ['PMI_SIZE'])

        stages = 13
        batch_size = 1331
        hidden_size = batch_size
        out_size = batch_size

        # Input placeholder (batch_size x hidden) - init to 1s
        inputs = tf.placeholder(tf.float32,
                                shape=(batch_size, hidden_size),
                                name="Input")

        # Large matrices (hidden x out_dim) - init random
        weights = []
        for i in range(stages):
            initer = tf.constant_initializer(pow(2.0, i + 1.0))
            weights.append(
                tf.get_variable("weights_{}".format(i),
                                shape=(hidden_size, out_size),
                                dtype=tf.float32,
                                initializer=initer))

        # Calculate output through dependent allreduces
        stage_input = inputs
        for i in range(stages):
            inter_output = tf.add(stage_input,
                                  weights[i],
                                  name="add_red_{}".format(i))
            stage_input = mpi.allreduce(inter_output,
                                        average=average_allreduce)

        all_reduced = stage_input

        # Local reduced output for verification
        local_input = inputs
        for i in range(stages):
            inter_output = tf.add(local_input,
                                  weights[i],
                                  name="addin_loc_{}".format(i))
            my_reducer = tf.Variable(initial_value=np.ones(
                (hidden_size, out_size)),
                                     dtype=tf.float32,
                                     name="loc_redr_{}".format(i))
            for r in range(num_ranks):
                my_reducer = tf.add(my_reducer,
                                    inter_output,
                                    name="add_loc_{}_{}".format(i, r))
            if average_allreduce:
                local_input = tf.div(my_reducer,
                                     num_ranks,
                                     name="div_loc_{}".format(i))
            else:
                local_input = my_reducer

        local_reduced = local_input

        # NOTE: This assumes that device IDs are numbered the same as ranks
        gpu_options = tf.GPUOptions(visible_device_list=str(my_rank))
        config = tf.ConfigProto(gpu_options=gpu_options)

        # MPI Session to test allreduce
        with mpi.Session(config=config) as sess:
            sess.run(tf.global_variables_initializer())

            input_feed = np.ones((batch_size, hidden_size), dtype=np.float32)
            our_output = input_feed[0][0]
            spread_var = 100
            input_feed = input_feed + my_rank * spread_var
            my_output = input_feed[0][0]
            for i in range(stages):
                curr_feed = my_output + pow(2.0, i + 1.0)
                my_output = curr_feed * num_ranks + 1
                curr_our_feed = our_output + pow(2.0, i + 1.0)
                if i == 0:
                    sum_ranks = num_ranks * (num_ranks - 1) / 2
                    our_output = curr_our_feed * num_ranks + \
                      spread_var * sum_ranks
                else:
                    our_output = curr_our_feed * num_ranks

            print("rank {}: My output is {}".format(my_rank, my_output))
            my_correct = np.zeros((batch_size, hidden_size), dtype=np.float32)
            my_correct = my_correct + my_output
            print("rank {}: Our output is {}".format(my_rank, our_output))
            our_correct = np.zeros((batch_size, hidden_size), dtype=np.float32)
            our_correct = our_correct + our_output

            for i in range(1000):
                if i % 100 == 0:
                    print("{}: iter {}".format(my_rank, i), flush=True)
                feed_dict = {inputs: input_feed}
                out_all_red, out_loc_red \
                  = sess.run([all_reduced, local_reduced],
                             feed_dict=feed_dict)

                if not np.allclose(out_loc_red, my_correct) or \
                   not np.allclose(out_all_red, our_correct):
                    print("Test incorrect on iter {}".format(i), flush=True)
                    self.dumpFailure(my_rank, out_loc_red, my_correct,
                                     out_all_red, our_correct)
                    assert (np.allclose(out_loc_red, my_correct)
                            and np.allclose(out_all_red, our_correct))